Chapter 2. ALGEBRA

Chapter 2. ALGEBRA

This section deals with algebraic properties of the sets W_{n} and how they illustrate the fact of relativity of mathematics. We begin with the most basic algebraic equation $a \times{ }_{n} x=b$.

Now, due to the rules of arithmetic in any W_{n} we have the following cases. Suppose $a \in W_{n}$ such that $a^{-1} \notin W_{n}$, then any of the following can occur: we can have a unique solution, e.g. $3 \in W_{2}, 3^{-1} \notin W_{2}$, and $x=1$ is the unique solution of $3 \times_{2} x=3$; many solutions, e.g. $0.3 \in W_{2}, 0.3^{-1} \notin W_{2}$, and $x=0.1,0.11, \ldots, 0.19$ are the solutions of $0.3 \times_{2} x=0.03$; and no solutions, e.g. $3 \in W_{2}, 3^{-1} \notin W_{2}$, and there is no solution to $3 \times_{2} x=1$. The next case is when there is a unique inverse a^{-1} for $a \in W_{n}$, then we have the following fact: $a \times_{n} x=b$ either has a unique solution or no solutions. That the equation has many solutions does not occur here. To see this, first note, that a unique inverse cannot exist if $|a|<1$. Now, write the equation as $a_{0} \cdot a_{1} \ldots a_{n} \times_{n} x_{0} \cdot x_{1} \ldots x_{n}=b$ with $a_{0} \neq 0$ and assume a solution exists. Then if we vary x_{n} between 0 and 9 the $a_{0} \cdot 0 . \underbrace{0 . .0}_{n-1} x_{n}$ term of the product will also vary, thus changing the product and invalidating the equality, hence the solution must be unique. Finally, we consider the case where $\left|\left\{a^{-1}\right\}\right|>1$. The following is then true: $a \times_{n} x=b$ has either many solutions or no solutions. To see this, write $a_{0} \cdot a_{1} \ldots a_{n} \times_{n} x_{0} \cdot x_{1} \ldots x_{n}=b$ and assume that there is a solution. Now, note that if we vary x_{n} between 0 and 9 the term $0 \cdot \underbrace{0 \ldots 0}_{n-2} a_{n-1} \cdot 0 \cdot \underbrace{0 \ldots 0}_{n-1} x_{n}$ of the product is irrelevant since, by definition, it drops off and we get many solutions.

Chapter 2. ALGEBRA

Now we will show the independence of existence of solutions of the equation $a \times{ }_{n} x=b$ by varying n. The cases that arise are as follows: if there exists a unique solution in W_{n}, that does not necessarily imply the existence of a solution in W_{m} for $m \neq n$. However, if there are many solutions to an equation in W_{n}, there will be the same number of solutions in W_{m}, but not necessarily the same ones. Here are some examples: $2 \times_{2} x=0.01$ has no solution, but $2 \times_{4} x=0.01$ has a unique solution $x=0.005$. Both $3 \times_{2} x=18$ and $3 \times{ }_{4} x=18$ have a unique solution $x=6$. The equation $0.1 \times 2 \times 0.12$ has 10 solutions $\{1.2,1.21, \ldots, 1.29\}$ and $0.1 \times{ }_{4} x=0.12$ also has 10 solutions, $\{1.2,1.2001, \ldots, 1.2009\}$. Note, that the solutions are different. Also, notice the two equations $0.1 \times{ }_{2} x=0.12$ and $1 \times 2 x=1.2 \Leftrightarrow x=1.2$ are not equivalent due to different number of solutions.

We now consider systems of linear equations. Let us start with a special case. We know that in $W_{2}, 2^{-1}=0.5$ and $0.5^{-1}=\{2,2.01, \ldots, 2.09\}$, then the system $\left\{\begin{array}{c}2 \times_{2} x=0.32 \\ 2.01 \times_{2} x=0.32 \\ \ldots \\ 2.09 \times_{2} x=0.32\end{array}\right.$ has a unique solution $x=0.16$, moreover each equation in the system also has $x=0.16$ as a unique solution. In fact, we have the following theorem: the system $a_{i} \times{ }_{n} x=b$ such that $a_{i} \in\left\{a^{-1}\right\}$ for some $a \in W_{n}$ either has no solution (in this case each equation has no solution) or has a unique solution (in this case, each equation has the same unique solution).

Chapter 2. ALGEBRA

Next we consider systems of two linear equations with two unknowns, their solutions in W_{n} and W_{m} for $n \neq m$, and also show that systems can be nonequivalent after elementary row operations. For example, consider $\left\{\begin{array}{l}0.14 \times_{2} x+{ }_{2} 0.23 \times{ }_{2} y=0.22 \\ 0.61 \times_{2} x+{ }_{2} 0.43 \times_{2} y=0.76\end{array}\right.$, then, for example, $x=0.83$ and $y=0.79$ is a solution, and therefore, there are actually 100 solutions in W_{2} : $\{(0.89,0.7) \quad(0.89,0.71) \quad \ldots \quad(0.89,0.79)\}$. Now, consider $\left\{\begin{array}{l}0.14 \times{ }_{4} x+{ }_{4} 0.23 \times{ }_{4} y=0.22 \\ 0.61 \times{ }_{4} x+{ }_{4} 0.43 \times{ }_{4} y=0.76\end{array}\right.$, then an easy computation shows that any solution of the W_{2} system is not a solution in W_{4}. To see this, take the minimal solution from W_{2}, then $0.14 \times 4 \times 0+40.23 \times 4=0.273$ and obviously any other solution will produce a larger result, hence cannot be a solution of this system. Now, by computing the solution to the system (using regular real numbers), we get numbers that in W_{2} are $x=1$ and $y=0.35$, then by incrementing these values by 0.01 , we see that there can be no solutions in W_{4}.

On the other hand, consider $\left\{\begin{array}{l}10 \times_{4} x+{ }_{4} 20 \times_{4} y=0.07 \\ 20 \times_{4} x+{ }_{4} 10 \times_{4} y=0.05\end{array}\right.$. This system has a (in fact, unique)
solution $x=0.0010, y=0.0030$, whereas the system $\left\{\begin{array}{l}10 \times_{2} x+{ }_{2} 20 \times_{2} y=0.07 \\ 20 \times_{2} x+{ }_{2} 10 \times_{2} y=0.05\end{array}\right.$ has no
solution. Thus, the order of m and n has no influence on solutions. Other situations are
also possible. For example, $\left\{\begin{array}{l}1 \times_{n} x+{ }_{n} 1 \times_{n} y=3 \\ 2 \times_{n} x+_{n} 1 \times_{n} y=4\end{array}\right.$ has a solution $(x=1, y=2)$ for $n=2,4$,
whereas the system $\left\{\begin{array}{l}1 \times_{n} x+{ }_{n} 1 \times_{n} y=3 \\ 2 \times_{n} x+{ }_{n} 2 \times_{n} y=5\end{array}\right.$ has solutions for neither values of n.

Chapter 2. ALGEBRA

Let us consider the problem of determining equivalency between systems and their elementary transformation (via row operations). Given $\left\{\begin{array}{l}0.14 \times{ }_{2} x+{ }_{2} 0.23 \times{ }_{2} y=0.22(1) \\ 0.61 \times_{2} x+{ }_{2} 0.43 \times{ }_{2} y=0.76(2)\end{array}\right.$, consider $\left\{\begin{array}{c}0.14 \times_{2} x+{ }_{2} 0.23 \times \times_{2} y=0.22(1) \\ 0.75 \times_{2} x+{ }_{2} 0.66 \times \times_{2} y=0.98(1)+(2)\end{array}\right.$. Now, ignore the possibility of
noncommutativity and pick any solution, e.g. $(0.8,0.7)$, of the first system and plug it into the second system. An easy computation shows that the solution does not satisfy the (1) + (2) . In fact, no other solution will satisfy it, hence the two systems are nonequivalent. Next, consider $\left\{\begin{array}{c}0.14 \times_{2} x+{ }_{2} 0.23 \times \times_{2} y=0.22(1) \\ 1.22 \times_{2} x+{ }_{2} 0.86 \times_{2} y=1.52(2) \cdot 2\end{array}\right.$. Again, ignore the possibility of noncommutativity and pick a solution, e.g. $(0.81,0.71)$, to the system with rows(1) and (2), then it easy to see that it does not satisfy the system with rows (1) and (2) $\cdot 2$. In fact, all other solutions except $(0.8,0.7)$ do not satisfy this system, hence, again, the systems are not equivalent. Similar analysis shows that the system $\left\{\begin{array}{c}0.14 \times{ }_{2} x+{ }_{2} 0.23 \times{ }_{2} y=0.22(1) \\ 6.24 \times{ }_{2} x+{ }_{2} 4.53 \times{ }_{2} y=7.82(1)+(2) \cdot 10\end{array}\right.$ is not equivalent to the original system.

Therefore, the elementary row operations produce nonequivalent systems of equations.
Here is another example. Consider the following system: $\left\{\begin{array}{c}1 \times{ }_{n} x+{ }_{n} 1 \times_{n} y=1 \\ 0.11 \times{ }_{n} x+{ }_{n} 0.37 \times{ }_{n} y=0.44\end{array}\right.$.
Now, no matter that $\left|\begin{array}{cc}1 & 1 \\ 0.11 & 0.37\end{array}\right| \neq 0$ for any $n \geq 2$, we have, for example, that there are solutions for $n=3,5,6,7,9$, and yet no solutions for $n=2,4,8$.

We move now to the Cartesian product $\underbrace{V_{n} \times \ldots \times V_{n}}_{k}$. This is just the standard Cartesian product, with the natural addition and constant multiplication:
$\left(x_{1}, \ldots, x_{k}\right)+_{n}\left(y_{1}, \ldots, y_{k}\right)=\left(x_{1}+_{n} y_{1}, \ldots, x_{k}+_{n} y_{k}\right)$ and $\alpha \times_{n}\left(x_{1}, \ldots, x_{k}\right)=\left(\alpha \times_{n} x_{1}, \ldots, \alpha \times_{n} x_{k}\right)$
for $x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{n}, \alpha \in W_{n}$. Now, in order for this product to make sense to a W_{n} -
observer, it must be such that $1 \leq k \leq \underbrace{9 \ldots 9}_{n}$. We can work with the standard notions when $k=2$ - plane, and $k=3$ - space. The classical axioms of a linear space are also valid here whenever $x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{n}, \alpha \in W_{E n[0.3 n]}$, but in general, these properties are not valid due to lack of associativity and distributivity.

Now what is left is to define $\operatorname{dim} V_{n}$. We introduce two alternative definitions. We first define $\operatorname{dim}_{1} V_{n}=\max s$, where s is the index of $u_{0}, u_{1}, \ldots, u_{s}$ such that $u_{0} \in W_{n}$, $u_{1} \in W_{n} \backslash\left\{W_{n} \times_{n} u_{0}\right\}$ such that $\left\{W_{n} \times_{n} u_{0}\right\} \not \subset\left\{W_{n} \times_{n} u_{1}\right\} ;$ $u_{2} \in W_{n} \backslash\left(\left\{W_{n} \times_{n} u_{0}\right\}+{ }_{n}\left\{W_{n} \times_{n} u_{1}\right\}\right)$ such that $\left\{W_{n} \times_{n} u_{0}\right\} \not \subset\left\{W_{n} \times_{n} u_{2}\right\}$ and $\left\{W_{n} \times{ }_{n} u_{1}\right\} \not \subset\left\{W_{n} \times{ }_{n} u_{2}\right\} ;$...
$u_{k} \in W_{n} \backslash\left(\ldots\left(\left(\left\{W_{n} \times_{n} u_{0}\right\}+_{n}\left\{W_{n} \times_{n} u_{1}\right\}\right)+_{n}\left\{W_{n} \times_{n} u_{1}\right\}\right)+_{n} \ldots+_{n}\left\{W_{n} \times_{n} u_{k-1}\right\}\right)$ such that $\left\{W_{n} \times_{n} u_{0}\right\}, \ldots,\left\{W_{n} \times u_{k-1}\right\} \not \subset\left\{W_{n} \times x_{k}\right\}$ and finally, $W_{n} \backslash\left(\ldots\left(\left(\left\{W_{n} \times_{n} u_{0}\right\}+_{n}\left\{W_{n} \times_{n} u_{1}\right\}\right)+{ }_{n}\left\{W_{n} \times_{n} u_{1}\right\}\right)+{ }_{n} \ldots+_{n}\left\{W_{n} \times_{n} u_{s-1}\right\}\right) \neq \varnothing$, but $W_{n} \backslash\left(\ldots\left(\left(\left\{W_{n} \times_{n} u_{0}\right\}+_{n}\left\{W_{n} \times_{n} u_{1}\right\}\right)+_{n}\left\{W_{n} \times_{n} u_{1}\right\}\right)+_{n} \ldots+_{n}\left\{W_{n} \times_{n} u_{s}\right\}\right)=\varnothing$.

Chapter 2. ALGEBRA

The second dimension, $\operatorname{dim}_{2} V_{n}=\max s$ where s is the index of $u_{0}, u_{1}, \ldots, u_{s}$ such that

$$
\begin{aligned}
& u_{0}, u_{1}, \ldots, u_{s} \in W_{n} \text { and }\left\{W_{n} \times_{n} u_{i}\right\} \not \subset\left\{W_{n} \times_{n} u_{j}\right\} \text { for } i<j \text { and } i=0, \ldots, s-1, \text { and } j=1, \ldots, s \text { and } \\
& W_{n} \backslash\left(\ldots\left(\left(\left\{W_{n} \times_{n} u_{0}\right\}+_{n}\left\{W_{n} \times_{n} u_{1}\right\}\right)+{ }_{n}\left\{W_{n} \times_{n} u_{1}\right\}\right)+{ }_{n} \ldots+_{n}\left\{W_{n} \times_{n} u_{s-1}\right\}\right) \neq \varnothing \text {, but } \\
& W_{n} \backslash\left(\ldots\left(\left(\left\{W_{n} \times_{n} u_{0}\right\}+_{n}\left\{W_{n} \times_{n} u_{1}\right\}\right)+_{n}\left\{W_{n} \times_{n} u_{1}\right\}\right)+_{n} \ldots+_{n}\left\{W_{n} \times_{n} u_{s}\right\}\right)=\varnothing .
\end{aligned}
$$

From the point of view of an observer with a higher level of thickness, we have the following theorem: $\operatorname{dim}_{i} \underbrace{V_{n} \times \ldots \times V_{n}}_{k}=\left(\operatorname{dim}_{i} V_{n}\right)^{k}$ for $i=1,2$. Now, the relationship between the two definitions can be expressed in the following theorem: $\operatorname{dim}_{2} V_{n} \geq \operatorname{dim}_{1} V_{n}$.

Here is a useful result when dealing with $W_{2}: \operatorname{dim}_{1} V_{2} \geq 7$. To show equality, consider the set of elements $\{99.99,99.98,99.97,99.95,99.92,99.90,99.53\}$, we will show that this set spans W_{2}. Consider the following set
$A=\left\{V_{2} \times 29.99\right\} \cap\left\{V_{2} \times_{2} 99.98\right\} \cap\left\{V_{2} \times_{2} 99.97\right\} \cap\left\{V_{2} \times_{2} 99.95\right\} \cap\left\{V_{2} \times 29.92\right\} \cap$
$\cap\left\{V_{2} \times 29.90\right\} \cap\left\{V_{2} \times 99.53\right\}$

Now, this set has 199 points, moreover $\left\{V_{2} \times_{2} 99.99\right\} \backslash A=\{ \pm 99.99\}$,
$\left\{V_{2} \times 29.98\right\} \backslash A=\{ \pm 99.98\},\left\{V_{2} \times 99.97\right\} \backslash A=\{ \pm 99.97\},\left\{V_{2} \times 29.95\right\} \backslash A=\{ \pm 99.95\}$,
$\left\{V_{2} \times_{2} 99.92\right\} \backslash A=\{ \pm 99.92\},\left\{V_{2} \times_{2} 99.90\right\} \backslash A=\{ \pm 99.90\}$ and $\left\{V_{2} \times 29.53\right\} \backslash A=\{ \pm 99.53\}$

- See Appendices 1-7. Finally, to see that
$W_{2}=\left(\left(\left(\left(\left(\left(\left\{V_{2} \times_{2} 99.99\right\}++_{2}\left\{V_{2} \times_{2} 99.98\right\}\right)++_{2}\left\{V_{2} \times_{2} 99.97\right\}\right)++_{2}\left\{V_{2} \times_{2} 99.95\right\}\right)++_{2}\left\{V_{2} \times_{2} 99.92\right\}\right)++_{2}\left\{V_{2} \times_{2} 99.90\right\}\right)\right.$,
- see Appendices 8-13.

We can also have the following cases occur: $\left\{V_{2} \times 28.99\right\} \cap\left\{V_{2} \times_{2} 99.01\right\}=\{0\}$ so that we have two lines contained in W_{2} intersecting only at zero. Also, we have the following theorem $W_{2}=\left(\left(\left\{V_{2} \times_{2} 99.01\right\}+{ }_{2}\left\{V_{2} \times_{2} 98.99\right\}\right)+{ }_{2}\left\{V_{2} \times_{2} 95.51\right\}\right)$, moreover these three lines intersect only at zero.

Now we can consider the plane $V_{2} \times 28.99+{ }_{2} V_{2} \times 2.01$ that lies entirely on the line $V_{2} \times 2$. Note, that $V_{2} \times 2.01=\{0, \pm 0.01, \ldots, \pm 0.99\}$ and we can show that $V_{2} \times 28.99+{ }_{2} V_{2} \times 2.01$ actual equals W_{2}, i.e. this plane coincides with the line.

Also we have that $V_{2} \times 28.99 \cap V_{2} \times{ }_{2} 99.01=\{0\}$, i.e. the space $V_{2} \times 98.99+{ }_{2} V_{2} \times{ }_{2} 99.01$ is generated by two intersecting (only at zero) systems of collinear vectors. Now, take $98.03 \in V_{2} \times 28.99+{ }_{2} V_{2} \times 99.01=B$ and consider $V_{2} \times{ }_{2} 98.03 \cap B$. Also $\left|V_{2} \times 99.03 \cap B\right|=31$ and hence $W_{2}=\left(\left(V_{2} \times 29.99+V_{2} \times 29.01\right)+{ }_{2} V_{2} \times 29.03\right)$.

