## Chapter 3. GEOMETRY

In Chapter 2 we have defined a $k$ - fold Cartesian product of $W_{n}$ 's. In particular, $W_{n} \times W_{n}$ is a plane and $W_{n} \times W_{n} \times W_{n}$ is a space. Now, a line in the plane will be defined to be $\left\{(x, y) \in W_{n} \times W_{n} \mid a \times_{n} x+{ }_{n} b \times_{n} x+{ }_{n} c=0\right.$ for some $\left.a, b, c \in W_{n}\right\}$ and a plane in a space will be defined to be $\left\{(x, y, z) \in W_{n} \times W_{n} \times W_{n} \mid a \times_{n} x+_{n} b \times_{n} x+_{n} c \times_{n} x+_{n} d=0\right.$ for some $\left.a, b, c, d \in W_{n}\right\}$. In particular, for $u \in W_{n}$ we have $\left\{W_{n} \times_{n} u\right\}$ - a line on a plane and simultaneously, when viewed as $y=x \times_{n} u$, a line on a line $\left\{W_{n} \times{ }_{n} 1\right\}$. Also, for $u_{1}, u_{2} \in W_{n}$ we have the plane $\left\{W_{n} \times_{n} u_{1}\right\}+{ }_{n}\left\{W_{n} \times_{n} u_{2}\right\}$ that lies in space, but when viewed as $u_{1} \times{ }_{2} x+u_{2} \times_{2} y=z$, it is a plane on the line $\left\{W_{n} \times{ }_{n} 1\right\}$. In fact, we can also have a space $\left\{W_{n} \times_{n} u_{1}\right\}+_{n}\left\{W_{n} \times_{n} u_{2}\right\}+{ }_{n}\left\{W_{n} \times_{n} u_{3}\right\}$ on that same line, etc. Also, as stated in Chapter 2, we can have a line containing two lines that intersect only at zero.

Now, let us consider intersection of lines on the plane $W_{2} \times W_{2}$. Here are a few examples of how two lines that intersect in the usual sense actually intersect at no, one, two, ten and even a hundred points. For no intersection, consider $\left\{\begin{array}{c}0.08 \times_{2} x++_{2} 0.78 \times_{2} y+{ }_{2} 0.09=0 \\ -0.47 \times_{2} x-{ }_{2} 0.75 \times_{2} y-{ }_{2} 0.38=0\end{array}\right.$, for one point $\left\{\begin{array}{l}0.59 \times_{2} x++_{2} 0.79 \times_{2} y+{ }_{2} 0.59=0 \\ 1.00 \times_{2} x+{ }_{2} 1.00 \times_{2} y+{ }_{2} 0.41=0\end{array}\right.$, for two points $\left\{\begin{array}{l}0.31 \times{ }_{2} x+{ }_{2} 1.00 \times \times_{2} y+{ }_{2} 0.63=0 \\ 1.00 \times{ }_{2} x+{ }_{2} 0.34 \times_{2} y+{ }_{2} 0.91=0\end{array}\right.$, for ten points $\left\{\begin{array}{l}0.30 \times_{2} x+_{2} 1.00 \times_{2} y+{ }_{2} 0.53=0 \\ 0.32 \times_{2} x++_{2} 0.28 \times_{2} y+{ }_{2} 0.74=0\end{array}\right.$, and, finally, for 100 points in the intersection, consider $\left\{\begin{array}{l}0.14 \times_{2} x+20.23 \times 2 y-{ }_{2} 0.22=0 \\ 0.61 \times{ }_{2} x++_{2} 0.43 \times \times_{2} y-_{2} 0.76=0\end{array}\right.$. For a visual illustration of each, see Appendices $14-18$.

Now, we can also have different situations occur depending on the observers. We can have two given lines intersecting in a plane for any $W_{n}$, not intersecting for any $W_{n}$, or intersect for some

## Chapter 3. GEOMETRY

$W_{n}$, but not intersect for $W_{m}$ such that $m \neq n$. In general, given 2-fold Cartesian products of $W_{n_{1}}, \ldots, W_{n_{k}}$ with $n_{1}<\ldots<n_{k}$ there exists two lines with coefficients in $W_{n_{1}}$, such that they intersect for a given $W_{n_{i}}$ and do not intersect for the others. Moreover, for any subset $\left\{n_{i}\right\}$ of $\left\{n_{1}, \ldots, n_{k}\right\}$, there exits two of lines, which intersect in $W_{\left\{n_{i}\right\}}$, but not in $\left\{n_{1}, \ldots, n_{k}\right\} \backslash\left\{n_{i}\right\}$.

Here are some examples. Let $\left\{\begin{array}{c}y=x+{ }_{n} 2 \\ y=4 \times{ }_{n} x+{ }_{n} 1\end{array}\right.$ be the two lines, then solving this system, we get $1=3 \times_{n} x$ which has no solution for any $n$. Next, consider $\left\{\begin{array}{l}y=x+{ }_{n} 1 \\ y=3 \times{ }_{n} x\end{array}\right.$. Solving the system, we get $x=0.5$ and $y=1.5$, so the two lines intersect for any $W_{n}$. Now consider, $\left\{\begin{array}{l}y=1.7 \times{ }_{2} x+{ }_{2} 0.8 \\ y=0.1 \times \times_{2} x+{ }_{2} 1.8\end{array}\right.$. To find this system's solution, consider its usual solution viewed in $W_{2}$, namely $(0.64,1.86)$. Indeed, it is the solution of the given system. Now, when the solution is viewed in $W_{4}$, which is $(0.625,1.8625)$, we also see that it is the solution, so the lines intersect for both $n=2,4$. For the next example, we consider the following two lines $\left\{\begin{array}{l}y=31.85 \times_{2} x+{ }_{2} 1.28 \\ y=7.41 \times{ }_{2} x+{ }_{2} 7.12\end{array}\right.$ and consider their usual solution (0.24,8.88). By simply plugging in these values into the system, we see that they satisfy it. However, when the usual solution is viewed in $W_{4}$, we get $(0.2389,8.8878)$ and it does not satisfy the system, however, even if we vary the $x$-coordinate's last decimal by unit increments, we find that there can be no solution for this system.

We now move to the discussion of Lobachevsky's and Riemannian geometries. Fix the $x$ - axis, $l_{0}$, and pick a point on the $y$-axis, $\operatorname{say}(0, b)$. Then we have the following theorem: the

## Chapter 3. GEOMETRY

line $y=k x+b$ is parallel to $l_{0}$ in Lobachevsky sense iff $|b| \geq 1$, and in case $|b|<1$, we would only have parallel lines in Euclidean sense.

In the new geometry however, there are many lines (not just in Lobachevsky or Euclidean sense) which do not intersect $l_{0}$ but go through the point $(0, b)$. For example, consider $\left\{\begin{array}{c}y=3 \times_{n} x+_{n} b \\ y=0\end{array}\right.$, then $3 \times x=-b$ and then, for instance, for $b=1$, the system will not have a solution for any $n$. Obviously, for $b \neq 0$ we can always find (more than one) $k$, such that $\left\{\begin{array}{c}y=k \times{ }_{n} x+{ }_{n} b \\ y=0\end{array}\right.$ does not have no solution. Consider $W_{2}$, then, in particular, for $b=1,1.01, \ldots, 1.98$, we find that $k=0.01$. In fact, we have the following table for parallel lines:

| $b$ | $k$ | Notes |
| :--- | :--- | :--- |
| $0,0.01, \ldots, 0.99$ | 0 | Then there exits a unique line going through $(0, b)$ <br> parallel to $l_{0}$, which is, in fact, parallel in Euclidean <br> sense. |
| $1,1.01, \ldots, 1.98$ | 0.01 | The lines going through $(0, b)$ are parallel to $l_{0}$ in <br> Lobachevsky sense, and the lines for various values <br> of $b$ are parallel to each other in Euclidean sense. |
| $1.99,1.00, \ldots, 2.97$ | 0.02 | $\ldots$ |
| $2.98,2.99, \ldots, 3.96$ | 0.03 | $\ldots$ |
| $\ldots$ | $\ldots$ | $\ldots$ |

This table was compiled using the fact that not intersecting the $x$-axis implies that the line gets as close as possible to $l_{0}$ in $W_{2}$, i.e. contains the point $(-99.99,0.01)$ or $(-99.99,0.02)$, etc.

Next, we consider Riemannian geometry, not as it is usually constructed, but as follows. Let us consider everything now with respect to $W_{2}$ and consider a unit cube centered at zero. Then the Riemannian line is an intersection of a plane containing the origin with faces of the cube. In the usual Riemannian geometry, any two such lines would intersect in two points, in the new

## Chapter 3. GEOMETRY

geometry, however, the intersections may contain no, two, four, and twenty points. See
Appendices 19-22. Also, for further numerical examples see Appendix 23.
The classical Riemannian geometry (a line is an intersection of a plane containing the origin with the unit sphere) also changes in the new light. Consider two planes
$\left\{\begin{array}{l}0.2 \times_{2} x-_{2} 0.1 \times \times_{2} y-_{2} 10 \times_{2} z=0 \\ 0.3 \times_{2} x-_{2} 0.2 \times_{2} y-_{2} 36 \times_{2} z=0\end{array}\right.$ and the sphere $x^{2}+{ }_{2} y^{2}+{ }_{2} z^{2}=1$. These three sets intersect in 100 points. Here is an example of two planes intersecting the sphere in exactly two points $\left\{\begin{array}{c}x=0 \\ y=0 \\ x^{2}+{ }_{2} y^{2}+{ }_{2} z^{2}=0\end{array}\right.$, which are $(0,0, \pm 1)$. The next system, $\left\{\begin{array}{c}x+{ }_{2} y-_{2} 4 \times_{2} z=0 \\ y-_{2} 4 \times_{2} z=0 \\ x^{2}+{ }_{2} y^{2}+{ }_{2} z^{2}=1\end{array}\right.$ implies that $\left\{\begin{array}{c}x=0 \\ y=4 \times \times_{2} z \text { and hence no solution, since } 17^{-1} \text { does not exist (see Chapter 2). Hence there are } \\ 17 \times_{2} z^{2}=1\end{array}\right.$ two lines that do not intersect in the new Riemannian sense.

With this new geometry, the fractal geometry becomes meaningless; also the shoreline length paradox disappears. Explanations follow.

