Chapter 6. EINSTEIN'S THEORY of RELATIVITY

Chapter 6. EINSTEIN'S THEORY of RELATIVITY

In this chapter we consider Einstein's Physical Special Theory of Relativity. However, we will not be dealing with the 4 -dimensional Einstein space, (t, x, y, z), but instead, we will be dealing with the 2-dimensional one, (t, x). Hence, we can consider two coordinate systems S and S^{\prime}, where $y=y^{\prime}, z=z^{\prime}$, and movement along the x-axis. Let c be an independent constant, so that we have movement from $M(t, x)$ to $\tilde{M}(\tilde{t}, \tilde{x})$ in S and, similarly, from $M\left(t^{\prime}, x^{\prime}\right)$ to $\tilde{M}\left(\tilde{t}^{\prime}, \tilde{x}^{\prime}\right)$ in S^{\prime} with speed c. Now, assume $\tilde{x} \geq x, \tilde{t} \geq t, \tilde{x}^{\prime} \geq x^{\prime}$, and $\tilde{t}^{\prime} \geq t^{\prime}$, so then we have $\tilde{x}-x=c(\tilde{t}-t)$ and $\tilde{x}^{\prime}-x^{\prime}=c\left(\tilde{t}^{\prime}-t^{\prime}\right)$, i.e. $\tilde{x}-x-c(\tilde{t}-t)=0$ and $\tilde{x}^{\prime}-x^{\prime}-c\left(\tilde{t}^{\prime}-t^{\prime}\right)=0$. Now, by Einstein, we shall have $\tilde{x}-x-c(\tilde{t}-t) \equiv \tilde{x}^{\prime}-x^{\prime}-c\left(\tilde{t}^{\prime}-t^{\prime}\right)$. Consider now the standard coordinate change $\left\{\begin{array}{l}x^{\prime}=a_{1} x+b_{1} t \\ t^{\prime}=a_{2} x+b_{2} t\end{array}\right.$ so then $\left\{\begin{array}{l}\tilde{x}^{\prime}=a_{1} \tilde{x}+b_{1} \tilde{t} \\ \tilde{t}^{\prime}=a_{2} \tilde{x}+b_{2} \tilde{t}\end{array}\right.$. Now, assume we are in W_{30}, then we have $\tilde{x}-_{30} x-{ }_{30} c \times_{30}\left(\tilde{t}-{ }_{30} t\right) \equiv$ $\equiv a_{1} \times 30{ }_{30}{ }_{30} b_{1} \times 30 \tilde{t}-{ }_{30} a_{1} \times_{30} x-30 b_{1} \times 30 t-$ $-{ }_{30} c \times_{30}\left(a_{2} \times_{30} \tilde{x}+_{30} b_{2} \times_{30} \tilde{t}-{ }_{30} a_{2} \times_{30} x-{ }_{30} b_{2} \times_{30} t\right)$
and $c=3 \cdot 10^{8}$ meters $/ \mathrm{sec}$.

Now, we can solve for $(\Delta x, \Delta t)$ the following equation:

$$
\Delta x-_{30} a_{1} \times_{30} \Delta x+_{30} 3 \cdot 10^{8} \times_{30}\left(a_{2} \times_{30} \Delta x\right)=3 \cdot 10^{8} \times_{30} \Delta t-_{30} 3 \cdot 10^{8} \times_{30}\left(b_{2} \times_{30} \Delta t\right)+{ }_{30} b_{1} \times_{30} \Delta t . \text { In }
$$ order to do that, we have to satisfy the following assumptions: the addition and multiplication has to be done in the order as it is written, respecting parentheses, all intermediate results must be in W_{30}. The solution procedure will occur as follows: we will give Δx and will try to find Δt by brute force, so our solution will either be $(\Delta x, \Delta t)$ or ($\Delta x, \Delta t$ d.n.e.). To begin with, we take $a_{1}=b_{2}=1.000000000000000138888888888888, b_{1}=-5.000000000000000694444444444444$ and $a_{2}=-0.000000000000000055555555555555$. Then $\Delta x=10^{-30}$ and $\Delta t=0$ turns out to be

Chapter 6. EINSTEIN'S THEORY of RELATIVITY

the solution of the general equation. What this means, is that small displacements can occur instantaneously, which contradicts Einstein's conclusions.

Generally, we have a problem of determining existence of Δt for a given Δx. Hence we can only talk about solutions to questions such as "given Δt, find Δx." Here is an illustration of this fact: suppose $\Delta x=5$. Then

$$
\begin{aligned}
& 5-_{30} 3 \cdot 10^{8} \times_{30} \Delta t= \\
& =a_{1} \times \times_{30} 6+_{30} b_{1} \times_{30}\left(1+{ }_{30} \Delta t\right)-{ }_{30}\left(a_{1}+{ }_{30} b_{1}\right)- \\
& -_{30} 3 \cdot 10^{8} \times_{30}\left(a_{2} \times_{30} 6+_{30} a_{1} \times_{30}\left(1+_{30} \Delta t\right)-30\left(a_{2}+_{30} a_{1}\right)\right)
\end{aligned}
$$

and hence we have the following equation:

Now, assume we have $x_{1} \neq x_{2}$ and $t_{1}=t_{2}=t$ and find $t_{1}{ }^{\prime}, t_{2}{ }^{\prime}$ in S^{\prime}. We have
$\left\{\begin{array}{l}t_{1}{ }^{\prime}=a_{2} \times_{30} x_{1}+{ }_{30} b_{2} \times_{30} t \\ t_{2}{ }^{\prime}=a_{2} \times{ }_{30} x_{2}+{ }_{30} b_{2} \times \times_{30} t\end{array}\right.$ and hence $t_{2}{ }^{\prime}-_{30} t_{1}{ }^{\prime}=a_{2} \times_{30} x_{2}-{ }_{30} a_{2} \times_{30} x_{1}$. Now, if $x_{2}=x_{1}+_{30} 10^{-14}$
and $x_{1}=1$ so that $x_{2}=1+_{30} 10^{-14}$, then $a_{2} \times_{30} x_{2}=a_{2}$ and $a_{2} \times_{30} x_{1}=a_{2}$ and hence $t_{2}{ }^{\prime}-t_{1}{ }^{\prime}=0$.
Therefore, the two events take place simultaneously, again, contradicting Einstein, however, if we take $x_{2}-x_{1}=10^{-13}$ (or larger), then $t_{2}{ }^{\prime}-t_{1}{ }^{\prime} \neq 0$ and the new results coincides with Einstein.

Next phenomenon we consider is the delay of a stopwatch, which in our case does not occur for small parameter values, as opposed to Einstein. Suppose that in S^{\prime} we have a fixed stopwatch (so that x^{\prime} is a constant), which counts time t^{\prime}. We will look at what the stopwatch is showing in S according to the map $t_{1} \rightarrow t_{1}{ }^{\prime}$. We have $\left\{\begin{array}{l}t_{1}{ }^{\prime}=a_{2} \times_{30} x_{1}+{ }_{30} b_{2} \times_{30} t_{1} \\ x_{1}{ }^{\prime}=a_{1} \times_{30} x_{1}+30{ }_{30} x_{30} t_{1}\end{array}\right.$ and
$\left\{\begin{array}{l}t_{2}{ }^{\prime}=a_{2} \times{ }_{30} x_{2}+{ }_{30} b_{2} \times{ }_{30} t_{2} \\ x_{2}{ }^{\prime}=a_{1} \times \times_{30} x_{2}+_{30} b_{1} \times_{30} t_{2}\end{array}\right.$, then $x_{1}{ }^{\prime}=x_{2}{ }^{\prime}$ implies that

$$
\left\{\begin{array}{c}
a_{1} \times_{30} x_{1}+{ }_{30} b_{1} \times{ }_{30} t_{1}=a_{1} \times \times_{30} x_{2}+{ }_{30} b_{1} \times_{30} t_{2} \\
t_{2}{ }^{\prime}-t_{1}^{\prime}=a_{2} \times_{30} x_{2}+{ }_{30} b_{2} \times_{30} t_{2}-{ }_{30} a_{2} \times_{30} x_{1}-{ }_{30} b_{2} \times_{30} t_{1}
\end{array}\right. \text { and hence }
$$

$$
\left\{\begin{array}{c}
a_{1} \times{ }_{30} x_{2}-{ }_{30} a_{1} \times \times_{30} x_{1}=b_{1} \times \times_{30} t_{1}-{ }_{30} b_{1} \times_{30} t_{2} \\
t_{2}{ }^{\prime}-t_{1}{ }^{\prime}=a_{2} \times_{30} x_{2}-{ }_{30} a_{2} \times_{30} x_{1}+{ }_{30} b_{2} \times_{30} t_{2}-{ }_{30} b_{2} \times_{30} t_{1}
\end{array} . \text { Now, let } t_{2}{ }^{\prime}-t_{1}{ }^{\prime}=10^{-30} .\right. \text { We are looking }
$$

for $t_{2}-t_{1}=10^{-30}\left(=t_{2}{ }^{\prime}-t_{1}{ }^{\prime}\right)$. Let $x_{1}=1, x_{2}=1+_{30} 5 \cdot 10^{-30}, t_{1}=1$, and $t_{2}=1+3010^{-30}$, then
$\left\{\begin{array}{c}a_{1} \times{ }_{30} x_{2}-{ }_{30} a_{1} \times{ }_{30} x_{1}=a_{1}+{ }_{30} 5 \cdot 10^{-30}-{ }_{30} a_{1}=5 \cdot 10^{-30} \\ b_{1} \times{ }_{30} 1-_{30} b_{1} \times_{30}\left(1+{ }_{30} 10^{-30}\right)=b_{1}-{ }_{30} b_{1}+{ }_{30} 5 \cdot 10^{-30}=5 \cdot 10^{-30}\end{array}\right.$, i.e. after we plug in corresponding
values into both equations, we see that equalities hold, therefore $t_{2}{ }^{\prime}-t_{1}{ }^{\prime}=t_{2}-t_{1}$ and the stopwatch does not change, contradicting Einstein. However, whenever $t_{2}{ }^{\prime}-t_{1}{ }^{\prime} \geq 10^{-14}$, the stopwatch does change, agreeing with Einstein.

Similarly, we can consider the reduction in length of a rod when traveling at light speed. In our case, this actually does not occur whenever the parameters are small enough. Let there be a rod of length l^{\prime} at time t^{\prime}, so $x_{2}{ }^{\prime}-x_{1}{ }^{\prime}=l^{\prime}$. Now, we have x_{1} and x_{2} at time t in S, so we have $\left\{\begin{array}{l}x_{1}{ }^{\prime}=a_{1} \times_{30} x_{1}+{ }_{30} b_{1} \times_{30} t \\ x_{2}{ }^{\prime}=a_{1} \times_{30} x_{2}+{ }_{30} b_{1} \times_{30} t\end{array}\right.$ with $l^{\prime}=x_{2}{ }^{\prime}-x_{1}{ }^{\prime}=a_{1} \times_{30} x_{2}-{ }_{30} a_{1} \times_{30} x_{1}$ and we need to connect l^{\prime} and $l=x_{2}-x_{1}$. Let a_{1} be as above. Now, let for instance, $l^{\prime}=10^{-30}$ and also let $x_{1}=1$, and $x_{2}=1+{ }_{30} 10^{-30}$. Then $a_{1} \times_{30} x_{1}=a_{1}$ and $a_{1} \times_{30} x_{2}=a_{1}+{ }_{30} 10^{-30}$, therefore, $l=l^{\prime}$. Similarly, we can show that $l=l^{\prime}$ whenever $l^{\prime}=10^{-15}$, contradicting Einstein. However, whenever $l^{\prime} \geq 10^{-14}$ there will be no solution, since $a_{1} \times_{30} x_{1}=a_{1}$ and $a_{1} \times_{30} x_{2}=a_{1}+_{30} 10^{-14}+{ }_{30} 10^{-30}$, hence there is agreement with Einstein.

