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Chapter 2. ALGEBRA

This section deals with algebraic properties of the sets nW and how they illustrate the fact

of relativity of mathematics. We begin with the most basic algebraic equation na x b´ = .

Now, due to the rules of arithmetic in any nW  we have the following cases. Suppose

na WÎ  such that 1
na W- Ï , then any of the following can occur: we can have a unique

solution, e.g. 23 WÎ , 1
23 W- Ï , and 1x =  is the unique solution of 23 3x´ = ; many

solutions, e.g. 20.3 WÎ , 1
20.3 W- Ï , and 0.1,0.11,...,0.19x =  are the solutions of

20.3 0.03x´ = ; and no solutions, e.g. 23 WÎ , 1
23 W- Ï , and there is no solution to

23 1x´ = .  The next case is when there is a unique inverse 1a-  for na WÎ , then we have

the following fact: na x b´ = either has a unique solution or no solutions. That the

equation has many solutions does not occur here. To see this, first note, that a unique

inverse cannot exist if 1a < . Now, write the equation as 0 1 0 1. ... . ...n n na a a x x x b´ =  with

0 0a ¹  and assume a solution exists. Then if we vary nx  between 0 and 9 the

{0
1

0.0...0 n
n

a x
-

×  term of the product will also vary, thus changing the product and

invalidating the equality, hence the solution must be unique. Finally, we consider the case

where { }1 1a- > . The following is then true: na x b´ = has either many solutions or no

solutions. To see this, write 0 1 0 1. ... . ...n n na a a x x x b´ = and assume that there is a solution.

Now, note that if we vary nx between 0 and 9 the term { {1
2 1

0.0...0 0.0...0n n
n n

a x-
- -

× of the product

is irrelevant since, by definition, it drops off and we get many solutions.
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Now we will show the independence of existence of solutions of the equation na x b´ =

by varying n . The cases that arise are as follows: if there exists a unique solution in nW ,

that does not necessarily imply the existence of a solution in mW  for m n¹ . However, if

there are many solutions to an equation in nW , there will be the same number of solutions

in mW , but not necessarily the same ones. Here are some examples: 22 0.01x´ =  has no

solution, but 42 0.01x´ =  has a unique solution 0.005x = . Both 23 18x´ =  and

43 18x´ =  have a unique solution 6x = .  The equation 20.1 0.12x´ =  has 10 solutions

{ }1.2,1.21,...,1.29 and 40.1 0.12x´ =  also has 10 solutions,{ }1.2,1.2001,...,1.2009 . Note,

that the solutions are different. Also, notice the two equations 20.1 0.12x´ =  and

21 1.2 1.2x x´ = Û =  are not equivalent due to different number of solutions.

We now consider systems of linear equations. Let us start with a special case. We know

that in 2W , 12 0.5- =  and { }10.5 2,2.01,..., 2.09- = , then the system

2

2

2

2 0.32
2.01 0.32

...
2.09 0.32

x
x

x

´ =ì
ï ´ =ï
í
ï
ï ´ =î

 has

a unique solution 0.16x = , moreover each equation in the system also has 0.16x =  as a

unique solution. In fact, we have the following theorem: the system i na x b´ =  such that

{ }1
ia a-Î for some na WÎ  either has no solution (in this case each equation has no

solution) or has a unique solution (in this case, each equation has the same unique

solution).
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Next we consider systems of two linear equations with two unknowns, their solutions in

nW and mW  for n m¹ , and also show that systems can be nonequivalent after elementary

row operations. For example, consider 2 2 2

2 2 2

0.14 0.23 0.22
0.61 0.43 0.76

x y
x y

´ + ´ =ì
í ´ + ´ =î

, then, for example,

0.83x =  and 0.79y =  is a solution, and therefore, there are actually 100 solutions in 2W :

( ) ( ) ( ){ }0.8,0.7 0.8,0.71 ... 0.8,0.79 , ( ) ( ) ( ){ }0.81,0.7 0.81,0.71 ... 0.81,0.79 , ,

( ) ( ) ( ){ }0.89,0.7 0.89,0.71 ... 0.89,0.79 . Now, consider

4 4 4

4 4 4

0.14 0.23 0.22
0.61 0.43 0.76

x y
x y

´ + ´ =ì
í ´ + ´ =î

 , then an easy computation shows that any solution of the

2W  system is not a solution in 4W . To see this, take the minimal solution from 2W , then

4 4 40.14 0.8 0.23 0.7 0.273´ + ´ =  and obviously any other solution will produce a larger

result, hence cannot be a solution of this system. Now, by computing the solution to the

system (using regular real numbers), we get numbers that in 2W are 1x =  and 0.35y = ,

then by incrementing these values by 0.01, we see that there can be no solutions in 4W .

On the other hand, consider 4 4 4

4 4 4

10 20 0.07
20 10 0.05

x y
x y

´ + ´ =ì
í ´ + ´ =î

. This system has a (in fact, unique)

solution 0.0010x = , 0.0030y = , whereas the system 2 2 2

2 2 2

10 20 0.07
20 10 0.05

x y
x y

´ + ´ =ì
í ´ + ´ =î

 has no

solution. Thus, the order of m and n has no influence on solutions. Other situations are

also possible. For example,
1 1 3
2 1 4

n n n

n n n

x y
x y

´ + ´ =ì
í ´ + ´ =î

 has a solution ( 1x = , 2y = ) for 2, 4n = ,

whereas the system
1 1 3
2 2 5

n n n

n n n

x y
x y

´ + ´ =ì
í ´ + ´ =î

 has solutions for neither values of n .
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Let us consider the problem of determining equivalency between systems and their

elementary transformation (via row operations). Given
( )
( )

2 2 2

2 2 2

0.14 0.23 0.22 1
0.61 0.43 0.76 2

x y
x y

´ + ´ =ìï
í ´ + ´ =ïî

,

consider
( )

( ) ( )
2 2 2

2 2 2

0.14 0.23 0.22 1
0.75 0.66 0.98 1 2

x y
x y
´ + ´ =ìï

í ´ + ´ = +ïî
. Now, ignore the possibility of

noncommutativity and pick any solution, e.g. ( )0.8,0.7 , of the first system and plug it

into the second system. An easy computation shows that the solution does not satisfy

the ( ) ( )1 2+ . In fact, no other solution will satisfy it, hence the two systems are

nonequivalent. Next, consider
( )

( )
2 2 2

2 2 2

0.14 0.23 0.22 1
1.22 0.86 1.52 2 2

x y
x y

´ + ´ =ìï
í ´ + ´ = ×ïî

. Again, ignore the

possibility of noncommutativity and pick a solution, e.g. ( )0.81,0.71 , to the system with

rows( )1  and ( )2 , then it easy to see that it does not satisfy the system with rows ( )1  and

( )2 2× . In fact, all other solutions except ( )0.8,0.7  do not satisfy this system, hence,

again, the systems are not equivalent. Similar analysis shows that the system

( )
( ) ( )

2 2 2

2 2 2

0.14 0.23 0.22 1
6.24 4.53 7.82  1 2 10

x y
x y

´ + ´ =ìï
í ´ + ´ = + ×ïî

 is not equivalent to the original system.

Therefore, the elementary row operations produce nonequivalent systems of equations.

Here is another example. Consider the following system:
1 1 1

0.11 0.37 0.44
n n n

n n n

x y
x y

´ + ´ =ì
í ´ + ´ =î

.

Now, no matter that
1 1

0
0.11 0.37

¹  for any 2n ³ , we have, for example, that there are

solutions for 3,5,6,7,9n = , and yet no solutions for 2,4,8n = .
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We move now to the Cartesian product ...n n

k

V V´ ´
14243

. This is just the standard Cartesian

product, with the natural addition and constant multiplication:

( ) ( ) ( )1 1 1 1,..., ,..., ,...,k n k n k n kx x y y x y x y+ = + +  and ( ) ( )1 1,..., ,...,n k n n kx x x xa a a´ = ´ ´

for 1 1,..., , ,..., ,k n nx x y y Wa Î . Now, in order for this product to make sense to a nW -

observer, it must be such that {1 9...9
n

k£ £ . We can work with the standard notions when

2k =  - plane, and 3k =  - space. The classical axioms of a linear space are also valid here

whenever [ ]1 1 0.3,..., , ,..., ,k n Ent nx x y y Wa Î , but in general, these properties are not valid due

to lack of associativity and distributivity.

Now what is left is to define dim nV . We introduce two alternative definitions. We first

define 1dim maxnV s= , where s is the index of 0 1, ,..., su u u such that 0 nu WÎ ,

{ }1 0\n n nu W W uÎ ´ such that { } { }0 1n n n nW u W u´ Ë ´ ;

{ } { }( )2 0 1\n n n n n nu W W u W uÎ ´ + ´  such that { } { }0 2n n n nW u W u´ Ë ´  and

{ } { }1 2n n n nW u W u´ Ë ´ ;

{ } { }( ) { }( ) { }( )0 1 1 1\ ... ...k n n n n n n n n n n n n n ku W W u W u W u W u -Î ´ + ´ + ´ + + ´  such that

{ } { } { }0 1,...,n n n n k n n kW u W u W u-´ ´ Ë ´  and finally,

{ } { }( ) { }( ) { }( )0 1 1 1\ ... ...n n n n n n n n n n n n n sW W u W u W u W u -´ + ´ + ´ + + ´ ¹ Æ , but

{ } { }( ) { }( ) { }( )0 1 1\ ... ...n n n n n n n n n n n n n sW W u W u W u W u´ + ´ + ´ + + ´ = Æ .
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The second dimension, 2dim maxnV s=  where s is the index of 0 1, ,..., su u u such that

0 1, ,..., s nu u u WÎ and { } { }n n i n n jW u W u´ Ë ´ for i j< and 0,..., 1i s= - , and 1,...,j s=  and

{ } { }( ) { }( ) { }( )0 1 1 1\ ... ...n n n n n n n n n n n n n sW W u W u W u W u -´ + ´ + ´ + + ´ ¹ Æ , but

{ } { }( ) { }( ) { }( )0 1 1\ ... ...n n n n n n n n n n n n n sW W u W u W u W u´ + ´ + ´ + + ´ = Æ .

From the point of view of an observer with a higher level of thickness, we have the

following theorem: ( )dim ... dim k
i n n i n

k

V V V´ ´ =
14243

 for 1, 2i = . Now, the relationship

between the two definitions can be expressed in the following theorem: 2 1dim dimn nV V³ .

Here is a useful result when dealing with 2W : 1 2dim 7V ³ .  To show equality, consider the

set of elements { }99.99,99.98,99.97,99.95,99.92,99.90,99.53 , we will show that this set

spans 2W . Consider the following set

{ } { } { } { } { }
{ } { }

2 2 2 2 2 2 2 2 2 2

2 2 2 2

99.99 99.98 99.97 99.95 99.92

99.90 99.53

A V V V V V

V V

= ´ ´ ´ ´ ´

´ ´

I I I I I

I I

Now, this set has 199 points, moreover { } { }2 2 99.99 \ 99.99V A´ = ± ,

{ } { }2 2 99.98 \ 99.98V A´ = ± , { } { }2 2 99.97 \ 99.97V A´ = ± , { } { }2 2 99.95 \ 99.95V A´ = ± ,

{ } { }2 2 99.92 \ 99.92V A´ = ± ,{ } { }2 2 99.90 \ 99.90V A´ = ± and { } { }2 2 99.53 \ 99.53V A´ = ±

- See Appendices 1-7. Finally, to see that
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{ } { }( ) { }( ) { }( ) { }( ) { }( )(2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 299.99 99.98 99.97 99.95 99.92 99.90 99.53W V V V V V V V= ´ + ´ + ´ + ´ + ´ + ´ + ´

- see Appendices 8-13.

We can also have the following cases occur: { } { } { }2 2 2 298.99 99.01 0V V´ ´ =I  so that we

have two lines contained in 2W intersecting only at zero. Also, we have the following

theorem { } { }( ) { }( )2 2 2 2 2 2 2 2 299.01 98.99 95.51W V V V= ´ + ´ + ´ , moreover these three

lines intersect only at zero.

Now we can consider the plane 2 2 2 2 298.99 0.01V V´ + ´  that lies entirely on the line

2 2 1V ´ . Note, that { }2 2 0.01 0, 0.01,..., 0.99V ´ = ± ±  and we can show  that

2 2 2 2 298.99 0.01V V´ + ´  actual equals 2W , i.e. this plane coincides with the line.

Also we have that { }2 2 2 298.99 99.01 0V V´ ´ =I , i.e. the space 2 2 2 2 298.99 99.01V V´ + ´

is generated by two intersecting (only at zero) systems of collinear vectors. Now, take

2 2 2 2 298.03 98.99 99.01V V BÎ ´ + ´ =  and consider 2 2 98.03V B´ I . Also

2 2 98.03 31V B´ =I  and hence ( )( )2 2 2 2 2 2 2 2 298.99 99.01 98.03W V V V= ´ + ´ + ´ .


