Analogy of Fermat's Last Problem in Observer's Mathematics -

- Mathematics of Relativity

Boris Khots

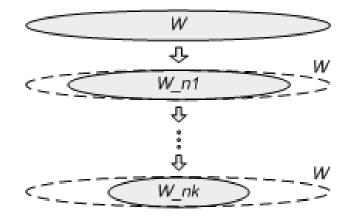
Dmitriy Khots bkhots@mchsi.com

dkhots@mchsi.com

- W set of all real numbers.
- W_n set of all finite decimal fractions of length 2n.
- $W_n = \{\underbrace{\star \cdots \star}_n \cdot \underbrace{\star \cdots \star}_n\}$.
- Concept of observers.

- All observers are naive.
- Each thinks that he lives in W, but
- Each *deals* with W_n , so called W_n -observer.
- Each sees more naive observers, i.e.,
- W_{n_1} -observer can identify that W_{n_2} -observer is naive if $n_1 > n_2$.

- Assume $n_1 > n_2$, then
- $\star \to \infty$ for W_{n_2} -observer means $\star \to 10^{n_2}$ for W_{n_1} -observer.
- $\star \to 0$ for W_{n_2} -observer means $\star \to 10^{-n_2}$ for W_{n_1} -observer.
- For $n_1 > n_2 > \cdots > n_k$, visual example:



Arithmetic - Addition & Subtraction

For
$$c = c_0.c_1...c_n$$
, $d = d_0.d_1...d_n \in W_n$

$$c \pm_n d = \begin{cases} c \pm d, \text{ if } c \pm d \in W_n \\ \text{not defined, if } c \pm d \notin W_n \end{cases}$$

write $((...(c_1 +_n c_2)...) +_n c_N) = \sum_{i=1}^N {}^n c_i$ for $c_1, ..., c_N$ iff the contents of any parenthesis are in W_n .

Arithmetic - Multiplication

For
$$c = c_0.c_1...c_n$$
, $d = d_0.d_1...d_n \in W_n$

$$c \times_n d = \sum_{k=0}^n {^n \sum_{m=0}^{n-k} {^n 0. \underbrace{0...0}_{k-1} c_k \cdot 0. \underbrace{0...0}_{m-1} d_m}$$

where $c, d \ge 0$, $c_0 \cdot d_0 \in W_n$, $0 \cdot \underbrace{0 \dots 0}_{k-1} c_k \cdot 0 \cdot \underbrace{0 \dots 0}_{m-1} d_m$ is the

standard product, and k = m = 0 means that $0 \cdot \underbrace{0 \dots 0}_{k-1} c_k = c_0$ and $0 \cdot \underbrace{0 \dots 0}_{m-1} d_m = d_0$. If either c < 0 or

d < 0, then we compute $|c| \times_n |d|$ and define $c \times_n d = \pm |c| \times_n |d|$, where the sign \pm is defined as usual. Note, if the content of at least one parentheses (in previous formula) is not in W_n , then $c \times_n d$ is not defined. Analogy of Fermat's Last Problem in Observer's Mathematics - - p. 6/??

Division is defined to be

$$c \div_n d = \begin{cases} r, \text{ if } \exists ! r \in W_n, r \times_n d = c \\ \text{not defined, if no such } r \text{ exists or not } ! \end{cases}$$

- The arithmetic coincides with standard if the numbers are away from W_n borders.
- If the borders are *touched*, then other properties arise.
- Mathematics based on idea of observers, given these arithmetic rules:
- Observer's Mathematics Mathematics of Relativity.
- For more info, visit www.mathrelativity.com.

- Various applications to Algebra, Geometry, Topology, and Analysis.
- In particular, a result in Logic: Axiom of Choice is invalid, e.g.
- W_2 contains 19,999 elements from the point of view of W_n -observer with large enough n.
- Then W₂-observer cannot choose any element from W₂ as any algorithm in W₂-world has no more than 99 steps.
- The (negative) solution to classical Fermat's problem requires Axiom of Choice to be valid.

Theorem: (Simple Case)

- For any n, W_n , $n \ge 2$;
- For any $m \in W_n \cap \mathbb{Z}$ with m > 2.
- There exists positive $a, b, c \in W_n$, such that

•
$$a^m +_n b^m = c^m$$
.

• Take
$$a = b = c = 0$$
. $\overbrace{0 \cdots 0}^{\kappa} 1$, $1 \le k \le n$, $k \times_n m > n$
($km \in W_n$).

1

• Then $a^m = b^m = c^m = 0$, hence, $a^m +_n b^m = c^m$.

• Note:
$$a^m = \underbrace{(\cdots ((a \times_n a) \times_n a) \times_n \cdots) \times_n a)}_m$$

Note: Power is not an associative operation.

- For illustrative purposes, here is a W_2 -example:
- $1.49 \times_2 1.49 = 2.14$.
- $1.49 \times_2 2.14 = 3.16$.
- $1.49 \times_2 3.16 = 4.67$, i.e.
- $((1.49 \times_2 1.49) \times_2 1.49) \times_2 1.49 = 4.67$, while
- $(1.49 \times_2 1.49) \times_2 (1.49 \times_2 1.49) = 4.57 \neq 4.67.$

$$1^3 +_2 1^3 = 1.28^3$$
.

- $1^{20} +_2 1^{20} = 1.05^{20}$.
- $1^{25} +_2 1^{25} = 1.04^{25}$.
- $1^{50} +_2 1^{50} = 1.02^{50}$.
- $1^3 +_2 1.21^3 = 1.41^3$.
- $1.2^3 +_2 1.03^3 = 1.41^3$.

$$1^{17} +_3 1^{17} = 1.044^{17}$$
.

- $1^{22} +_3 1^{22} = 1.034^{22}$.
- $1^{50} +_3 1^{50} = 1.016^{50}$.
- $1^{200} +_3 1^{200} = 1.005^{200}$.
- $1^{250} +_3 1^{250} = 1.004^{250}$.
- $1^{500} +_3 1^{500} = 1.002^{250}$.

- $1^{2000} +_4 1^{2000} = 1.0005^{2000}$.
- $1^{2500} +_4 1^{2500} = 1.0004^{2500}$.
- $1^{5000} +_4 1^{5000} = 1.0002^{5000}$.

- $1.85643209^5 +_8 1.55566643^5 = 1.98939654^5$.
- $1.00056781^4 +_8 1.42300976^4 = 1.50297066^4$.
- $1.85643209^4 +_8 1.67843218^4 = 2.10979538^4$.
- $1.8601023^3 +_8 1.35432561^3 = 2.07390372^3$.
- $1.02345678^3 +_8 1.25160402^3 = 1.44746886^3$.
- $1.13687002^3 +_8 1.57041392^3 = 1.74814264^3$.

 $1.4230990164830891^3 +_{16} 1.5704139255639073^3 =$ 1.8903509118894252^3 .