1. ARITHMETIC OPERATIONS IN OBSERVER’S MATHEMATICS

We consider a finite well-ordered system of observers, where each observer sees the real numbers
as the set of all infinite decimal fractions. The observers are ordered by their level of “depth”,
i.e. each observer has a depth number (hence, we have the regular integer ordering), such that
an observer with depth k sees that an observer with depth n < k sees and deals (to be defined
below) not with an infinite set of infinite decimal fractions, but, actually, with a finite set of
finite decimal fractions. We call this set W,,, i.e. it is the set of all decimal fractions, such that
there are at most n digits in the integer part and n digits in the decimal part of the fraction.
Visually, an element in WW,, looks like

[\ [\
-~ -~

n n

Moreover, an observer with a given depth is unaware (or can only assume the existence) of
observers with larger depth values and for his purposes, he deals with “infinity”. These observers
are called naive, with the observer with the lowest depth number — the most naive. However,
if there is an observer with a higher depth number, he sees that a given observer actually deals
with a finite set of finite decimal fractions, and so on. Therefore, if we fix an observer, then this
observer sees the sets W, ,..., W, with n; < ... < ny indicating the depth level, and realizes
that the corresponding observers see and deal with infinity. When we talk about observers,
we shall always have some fixed observer (called ‘us’) who oversees all others and realizes that
they are naive. The “W,-observer” is the abbreviation for somebody who deals with W,, while
thinking that he deals with infinity.

We begin by defining sets W,, which consist of all finite decimal fractions such that there
are at most n digits in the integer part and at most n digits in the decimal part. That is, the
set W, contains all elements of the form a = ag.a;...a,, where the integer part can be written
as ag = b,_1...byg, where b,_1,...,bp,a1,.....,a, € {0,1,...,9}. Now, given ¢ = cy.cy...cp, d =
do.dy...d, € W, we endow W, with the following arithmetic (+,, —p, Xpn, =) - from W,, -
observer point of view (m > n):

DEFINITION 1.1. Addition and subtraction

Lo ctd, ifctdeW,
e W defined, if ctd ¢ W,

where ¢ £ d is the standard addition and subtraction, and we write ((... (f1 +n f2) --.) +n [n) =
N

S>mfi for fi, ..., fn iff the contents of any parenthesis are in W, f1,..., fx € W,.
i=1

DEFINITION 1.2. Multiplication

n n—k
¢ %, d= kgo mzzo 0.0..0¢x - 0.0...0d,,

k—1 m—1

where ¢,d >0, cg-dy € W,,, 0.0...0¢, -0.0...0d,, is the standard product, and k = m = 0 means
k—1 ~1
that 0.0...0¢cx = ¢o and 0.0...0d,,, = dy. If either ¢ < 0 or d < 0, then we compute |c| X,, |d| and
k—1 m—1
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define ¢ X, d = % |c| X, |d|, where the sign £ is defined as usual. Note, if the content of at least
one parentheses (in previous formula) is not in W, then ¢ x,, d is not defined.

DEFINITION 1.3. Diwviston

c+nd—{ r,ifdreW, rx,d=c

not defined, if no such r exrists

Let n = 2, so we are in W5. Here are some examples of elements of Ws: 3.14,—-99,0.1 € W,
and 0.115,123.9, —100000 ¢ W,. Now, the examples of arithmetic:

2.08 49 11.9 = 13.98

(—2.08) +211.9 = 9.82
80 +5 24 = not defined
21.36 —5 0.87 = 20.49
1.36 —5 16.95 = —15.59
1.36 —3 (—99.95) = not defined
11 x5 8 = 88
(=5) X219 =-95
11 X5 12 = not defined
3.41 x52.64 =8.98
3.41 x5 (—2.64) = —8.98
3.41 x5 42.64 = not defined
99.41 x5 1.64 = not defined
0.85 x50.02=0
80 +24 =20
1+, 0.5 ={2,2.01,2.02,2.04, 2.05, 2.06, 2.07, 2.08, 2.09}

- we get 10 different r’s
1+, 3 = not defined

(since no r exists). In case p > ¢, ¥ — oo for W -observer means x — 107 for W-observer, and
* — 0 for W,-observer means x — 107¢ for W,-observer.

Here we provide some basic examples to illustrate what might happen.

1. Additive associativity fails:(x 4, y) +, 2 # =+, (y +, 2), e.g. let 10, 95, —35 € Wy, then
10 +2 95 ¢ Wy, hence (10 45 95) +o (—35) & Wa, but 10 + (595 45 (—35)) = 70 € Wy;

2. Multiplicative associativity fails:(z X, y) X, z # = X, (y X, 2), e.g. let 50.12, 0.85, and
0.61 € Wy, then 50.12 x5 0.85 = (50 4+ 0.1 + 0.02) - (0.8 + 0.05) = 40 + 2.5 + 0.08 = 42.58, and
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(50.12 X5 0.85) x5 0.61 = (42 + 0.5+ 0.08) - (0.6 + 0.01) = 25.2 + 0.42 + 0.3 = 25.65, whereas
0.85 x5 0.61 = (0.8 + 0.05) - (0.6 4+ 0.01) = 0.48 and 50.12 x5 (0.85 x5 0.61) = (50 + 0.1 + 0.02) -
(0.4 +0.08) = 20 + 4 + 0.04 = 24.04;

3. Distributivity fails: = X, (Y4, 2) # = Xy +n T X, 2, e.g. let 1.81, 0.74, 0.53 € Wy,
then 0.74 45 0.53 = 1.27 and 1.81 x5 (0.74 45 0.53) = (1+0.8 4+ 0.01) - (1 + 0.2+ 0.07) =
14 0.240.07+0.8+0.16 + 0.01 = 2.24, whereas 1.81 x5 0.74 = (1 + 0.8 + 0.01) - (0.7 + 0.04) =
0.7+0.0440.56 = 1.3 and 1.81 x20.53 = (1 + 0.8 + 0.01) - (0.5 + 0.03) = 0.5+ 0.03+ 0.4 = 0.93,
so that 1.81 x5 0.74 +5 1.81 x5 0.53 = 2.23;

4. Lack of the distribution law leads to the following result:

The statement “z|y and 2|z = z|(y+ 2)” isfalse. Here zly < 3Ir:ax,r =y. Assume
that x|y and z|z, what we want to show is equivalent to showing that y+ z # x x,, (r1 4+, r2) for
some x,y, z,71 and ro. Let x = 0.17, 7, = 0.85, 71 = 0.63, y = 0.17x20.85 = 0.(0.1+0.07)-(0.8+
0.05) = 0.08 and z = 0.17 x20.63 = 0.(0.1 + 0.07) - (0.6 + 0.03) = 0.06. Then y + z = 0.14, but
ri47s = 148 and 0.17x51.48 = (0.1 + 0.07) (1 + 0.4 + 0.08) = 0.1+0.04+0.07 = 0.21. In fact,
x is not divizor of y + z. This is because if we let 0.17 x5 0.9 = (0.1 4+ 0.07) - 0.9 = 0.09 < 0.14
and 0.17 x5 0.99 = (0.1 + 0.07) - (0.9 + 0.09) = 0.09 < 0.14, but 0.17 x5 1 = 0.17 > 0.14.

5. Multiplicative inverses do not necessarily exist, or if they do, they are not necessarily
unique in W,,. Here are some examples: let 2 € W,,, then 0.5 € W5 is the unique inverse of
2 for any W,,. On the other hand, 3 will not have an inverse in any W,. Now, let 27! = 0.5,
then (0.5)'is actually the following set {2,2.01,2.02,2.03,2.04, 2.05, 2.06, 2.07, 2.08,2.09} € Wk.
Therefore, (2_1)_1 is not necessarily 2, hence all we can claim is that if 7! exists, then x €

{(:L‘_l)_l}. Further, if an inverse of an element exists in W, it does not necessarily exist

in W, for m # n, independent of the order of mand n, e.g. if 0.91 € W,, then (0.91)_1 =
{1.1,1.11,1.12,1.13,1.14,1.15,1.16,1.17,1.18, 1.19} € Ws, but (0.91)"" ¢ W,, on the other
hand, 1671 = 0.0625 € Wy, but 167! ¢ Wj.

6. Square roots do not necessarily exist. Some examples are, if 4 € W, then v/4 = 2 for
any n and v/3 does not exist in n = 2. To show that, consider 1.75 x5 1.75 = (1 + 0.7 + 0.05) -
(14+0.74+0.05) =140.740.05+ 0.7+ 0.49 + 0.05 = 2.99 and

1.76 x5 1.76 = (1 + 0.7 4+ 0.06) - (1 4+ 0.7 + 0.06) = 1 4+ 0.7 + 0.06 + 0.7 + 0.49 + 0.06 = 3.01.

Further, if a square root of an element exists in W,,, it does not necessarily exist in W,
for m # n, independent of the order of m and n, e.g. V2 = 1.42 € W, since 1.42 x5 1.42 =
(14+0.4-+0.02)-(1+04+0.02) =1+04+0.0240.4+0.16 + 0.02 = 2, but /2 ¢ V,

since 1.4143x41.4143 = (1 + 0.4 + 0.01 4 0.004 + 0.0003)-(1 + 0.4 + 0.01 + 0.004 + 0.0003) =
1.9999

and 1.4144x41.4144 = 2.0001. Also, v/1.01 = 1.005 € Wy, since 1.005x,41.005 = (1 + 0.005)-
(14 0.005) = 1+ 0.005 + 0.005 = 1.01, but /.0 ¢ W, since 1 x5 1 = 1 and 1.01 x5 1.01 =
(140.01) - (1+0.01) =14 0.01 4+ 0.01 = 1.02.

Next, some basic theorems can be stated for W,:
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1. Any W, has zero divisors: 0.0...01 x,, 0.0...01 = 0;
~~ =~

n—1 n—1
2. If p € W,, with p # 2,5 a prime in the usual sense, then p~! & W, for any W,;
3. Ve,ye W, with z,y >0, x —y € W,.

4. M x,y,t,u e Wyand x>t >0and y > u > 0and x X,y € W,, then t x,, u € W,, and
T XY 2t Xpu

5. If given a € W, such that there is a unique a=! € W, then |a| > 1;
6. If |[a| < 1 and a™! exists, then |[{a"'}| > 1;

7. If [{a'}| > 1, then |a| < 1.

Let’s consider now additional valuable properties of introduced arithmetic.

1. Standard multiplications identities become wrong, for example

(z+y)* # 27 +2(zy) + 3

We have

THEOREM 1.4. P ((a+,b) X, (a4, b) = (a X, a4+, 2 X, (a X, b)) +,bX,b) <1, where P is
a probability. We can see a proof below. Let n = 2. Then

1. Left side of equality is (1.32 43 2.43) x5 (1.32 +5 2.43) = 3.75 x5 3.75 = 13.99, right side
consists from two parts. First, 1.32 x5 1.32 = 1.73; second, 2 x5 (1.32 X5 2.43) = 6.38, and
finally 2.43 x5 2.43 = 5.88. That means 1.73 +5 6.38) +2 5.88 = 13.99. Le left side equals
to right. But now let’s consider the following calculations.

2. Left side of equality is (1.32 45 2.79) x5 (1.32 45 2.79) = 4.11 x5 4.12 = 16.89, right side
consists from two parts. First, 1.32 x5 1.32 = 1.73; second, 2 x5 (1.32 X3 2.79) = 7.28, and
finally 2.79 x5 2.79 = 7.65. That means 1.73 4+, 7.28 +5 7.65 = 16.66. I.e left side does not
equal to right.

Let’s consider now a random variable
0 = (a4, 0) Xp (@4, 0) — ((a Xy a4+, 2 X, (ax, b))+, (bx,b))

where a,b > 0, and 97, and all elements of right side belong to W,,. Let’s n = 2. Using direct
calculation we can build F(z) - distribution function of d;, where

Fi(x) = P(6; < z)

, P is a probability. Graph of Fj(x) you can see on Fig. 1.
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Figure 1. Graph F;.

General proof for W, you can see below. If a,b non-negative integers in W, and (a +,
b) X, (a4, b) € W, then §; = 0. let’s consider now a = 0.9...9 and b = 0.0...08. Then
—— —

n

a+,b=1.0...07and (a+,b) X, (a+,b) =1.0...07x,1.0...07=1.0...014, but a X, a < 1,

n n n

bx,b=0,and 2 x, (a X, b) =0. Le. §; #0.
2. We have also the following theorem.

THEOREM 1.5.
Plex,(a+,b) =cxXy,a+,c%x,b) <1

, where P is a probability. Below you can see a proof. Let’s n = 2. Then
1. Left side of equality is 2 X5 (3 42 6) = 2 X9 9 = 18, right side consists from two parts.

First, 2 x93 =6, then 2 x5 6 = 12 and 6 +5 12 = 18 Le. left side equals to right. But go
to next calculations.

2. Left side of equality is 2.41 x5 (3.14 45 0.58) = 2.41 x5 3.72 = 8.95, right side consists from
two parts. First, 2.41 X5 3.14 = 7.55, then 2.41 x5 0.58 = 1.36 u 7.55 +5 1.36 = 8.91. lL.e.
left side does not equal to right.

Let’s consider a random variable

dy =cXp(a4,b) —p (¢ Xpa+,cx,b)
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Figure 2. Graph F,.

where a,b,c > 0, and d, and all elements of right side belong to W,,. Let’s n = 2. Using direct
calculations we can build Fy(x) - distribution function of dy, where Fy(z) = P(dy < z), where
P is a probability. Graph of Fy(z) you can see on Fig. 2.

General proof for W,, you can see below. If a,b,c - non-negative integers in W,, and a %,
(b X, ¢) € Wy, then d5 = 0. Let’s consider now a =2, b =0.9...9 and ¢ = 0.0...0L. Then
<~ —

n

bXxpc=0,ax%X,(bx,c)=0,ax,b=1.9...98 and (a X, b) X, ¢=0.0...01. T.e. 5 # 0.
—— S~——

3.

THEOREM 1.6. Let’s
I3 =cXp(axX,b) = (¢ Xpa) X, b

. Then 0 < P(d3 = 0) < 1, where P is a probability.

You can see a proof of this theorem below. Let’s n = 2. Then

1. Left side of this equality is 2 X5 (3 X2 6) = 2 X5 18 = 36, right side consists from two parts
. First, 2 x93 = 6, then 6 x5, 6 = 36. L.e left side equals to right. But let’s consider the
following calculations.

2. Left side is 2.41 x5 (3.14 X5 0.58) = 2.41 x5 1.79 = 4.27, for right side we get first ,
2.41 x5 3.14 = 7.55, then 7.55 x5 0.58 = 4.31. And left side does not equal to right Let’s
consider a random variable

I3 =c Xy (aXp,b) —p (¢ Xy a) X, b
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Figure 3. Graph Fj3.

, where a,b,c > 0, and d3 and all elements of right side belong to W,,. If we take n = 2,
then using direct calculations we can build Fs(z) - distribution function of d3, where
Fs3(x) = P(03 < z), and P is a probability. Graph of F3(x) you can see on Fig. 3.
General proof for W,, you can see below. If a,b,c are non-negative integers in W, and
¢ Xy (ax,b) € W,, then 3 = 0. Let’s consider c=2,4¢=10.9...99ub=0.0...0L. Then

3 =2x,(0.9...99 x,0.0...01) —, (2%,0.9...99) x,0.0...01 =
=0—,00...01=-00...01#£0
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