
1. ARITHMETIC OPERATIONS IN OBSERVER'S MATHEMATICS

We consider a �nite well-ordered system of observers, where each observer sees the real numbers
as the set of all in�nite decimal fractions. The observers are ordered by their level of �depth�,
i.e. each observer has a depth number (hence, we have the regular integer ordering), such that
an observer with depth k sees that an observer with depth n < k sees and deals (to be de�ned
below) not with an in�nite set of in�nite decimal fractions, but, actually, with a �nite set of
�nite decimal fractions. We call this set Wn, i.e. it is the set of all decimal fractions, such that
there are at most n digits in the integer part and n digits in the decimal part of the fraction.
Visually, an element in Wn looks like

_ ... _︸ ︷︷ ︸
n

. _ ... _︸ ︷︷ ︸
n

.

Moreover, an observer with a given depth is unaware (or can only assume the existence) of
observers with larger depth values and for his purposes, he deals with �in�nity�. These observers
are called naive, with the observer with the lowest depth number � the most naive. However,
if there is an observer with a higher depth number, he sees that a given observer actually deals
with a �nite set of �nite decimal fractions, and so on. Therefore, if we �x an observer, then this
observer sees the sets Wn1 ,. . . , Wnk

with n1 < ... < nk indicating the depth level, and realizes
that the corresponding observers see and deal with in�nity. When we talk about observers,
we shall always have some �xed observer (called `us') who oversees all others and realizes that
they are naive. The �Wn-observer� is the abbreviation for somebody who deals with Wn while
thinking that he deals with in�nity.

We begin by de�ning sets Wn which consist of all �nite decimal fractions such that there
are at most n digits in the integer part and at most n digits in the decimal part. That is, the
set Wn contains all elements of the form a = a0.a1...an where the integer part can be written
as a0 = bn−1...b0, where bn−1, ..., b0, a1, ...., an ∈ {0, 1, ..., 9}. Now, given c = c0.c1...cn, d =
d0.d1...dn ∈ Wn we endow Wn with the following arithmetic (+n,−n,×n,÷n) - from Wm -
observer point of view (m > n):

Definition 1.1. Addition and subtraction

c±n d =

{
c± d, if c± d ∈ Wn

not de�ned, if c± d /∈ Wn

where c ± d is the standard addition and subtraction, and we write ((... (f1 +n f2) ...) +n fN) =
N∑
i=1

nfi for f1, ..., fN i� the contents of any parenthesis are in Wn, f1, . . . , fN ∈ Wn.

Definition 1.2. Multiplication

c×n d =
n∑
k=0

n
n−k∑
m=0

n0. 0...0︸︷︷︸
k−1

ck · 0. 0...0︸︷︷︸
m−1

dm

where c, d ≥ 0, c0 · d0 ∈ Wn, 0. 0...0︸︷︷︸
k−1

ck · 0. 0...0︸︷︷︸
m−1

dm is the standard product, and k = m = 0 means

that 0. 0...0︸︷︷︸
k−1

ck = c0 and 0. 0...0︸︷︷︸
m−1

dm = d0. If either c < 0 or d < 0, then we compute |c| ×n |d| and
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de�ne c×n d = ± |c| ×n |d|, where the sign ± is de�ned as usual. Note, if the content of at least
one parentheses (in previous formula) is not in Wn, then c×n d is not de�ned.

Definition 1.3. Division

c÷n d =

{
r, if ∃ r ∈ Wn r ×n d = c
not de�ned, if no such r exists

Let n = 2, so we are in W2. Here are some examples of elements of W2: 3.14,−99, 0.1 ∈ W2

and 0.115, 123.9,−100000 /∈ W2. Now, the examples of arithmetic:

2.08 +2 11.9 = 13.98

(−2.08) +2 11.9 = 9.82

80 +2 24 = not de�ned

21.36−2 0.87 = 20.49

1.36−2 16.95 = −15.59

1.36−2 (−99.95) = not de�ned

11×2 8 = 88

(−5)×2 19 = −95

11×2 12 = not de�ned

3.41×2 2.64 = 8.98

3.41×2 (−2.64) = −8.98

3.41×2 42.64 = not de�ned

99.41×2 1.64 = not de�ned

0.85×2 0.02 = 0

80÷2 4 = 20

1÷n 0.5 = {2, 2.01, 2.02, 2.04, 2.05, 2.06, 2.07, 2.08, 2.09}

- we get 10 di�erent r's
1÷n 3 = not de�ned

(since no r exists). In case p > q, ?→∞ for Wq-observer means ?→ 10q for Wp-observer, and
?→ 0 for Wq-observer means ?→ 10−q for Wp-observer.

Here we provide some basic examples to illustrate what might happen.

1. Additive associativity fails:(x+n y) +n z 6= x+n (y +n z), e.g. let 10, 95, −35 ∈ W2, then
10 +2 95 /∈ W2, hence (10 +2 95) +2 (−35) /∈ W2, but 10 + (295 +2 (−35)) = 70 ∈ W2;

2. Multiplicative associativity fails:(x×n y) ×n z 6= x ×n (y ×n z), e.g. let 50.12, 0.85, and
0.61 ∈ W2, then 50.12 ×2 0.85 = (50 + 0.1 + 0.02) · (0.8 + 0.05) = 40 + 2.5 + 0.08 = 42.58, and
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(50.12×2 0.85) ×2 0.61 = (42 + 0.5 + 0.08) · (0.6 + 0.01) = 25.2 + 0.42 + 0.3 = 25.65, whereas
0.85×2 0.61 = (0.8 + 0.05) · (0.6 + 0.01) = 0.48 and 50.12×2 (0.85×2 0.61) = (50 + 0.1 + 0.02) ·
(0.4 + 0.08) = 20 + 4 + 0.04 = 24.04;

3. Distributivity fails: x ×n (y +n z) 6= x ×n y +n x ×n z, e.g. let 1.81, 0.74, 0.53 ∈ W2,
then 0.74 +2 0.53 = 1.27 and 1.81 ×2 (0.74 +2 0.53) = (1 + 0.8 + 0.01) · (1 + 0.2 + 0.07) =
1 + 0.2 + 0.07 + 0.8 + 0.16 + 0.01 = 2.24, whereas 1.81×2 0.74 = (1 + 0.8 + 0.01) · (0.7 + 0.04) =
0.7+0.04+0.56 = 1.3 and 1.81×2 0.53 = (1 + 0.8 + 0.01) · (0.5 + 0.03) = 0.5+0.03+0.4 = 0.93,
so that 1.81×2 0.74 +2 1.81×2 0.53 = 2.23;

4. Lack of the distribution law leads to the following result:

The statement �x|y and x|z ⇒ x| (y + z)� is false. Here x|y ⇔ ∃r : x×nr = y. Assume
that x|y and x|z, what we want to show is equivalent to showing that y+ z 6= x×n (r1 +n r2) for
some x, y, z, r1 and r2. Let x = 0.17, r1 = 0.85, r1 = 0.63, y = 0.17×20.85 = 0.(0.1+0.07)·(0.8+
0.05) = 0.08 and z = 0.17×2 0.63 = 0.(0.1 + 0.07) · (0.6 + 0.03) = 0.06. Then y + z = 0.14, but
r1+r2 = 1.48 and 0.17×21.48 = (0.1 + 0.07) ·(1 + 0.4 + 0.08) = 0.1+0.04+0.07 = 0.21. In fact,
x is not divizor of y + z. This is because if we let 0.17×2 0.9 = (0.1 + 0.07) · 0.9 = 0.09 < 0.14
and 0.17×2 0.99 = (0.1 + 0.07) · (0.9 + 0.09) = 0.09 < 0.14, but 0.17×2 1 = 0.17 > 0.14.

5. Multiplicative inverses do not necessarily exist, or if they do, they are not necessarily
unique in Wn. Here are some examples: let 2 ∈ Wn, then 0.5 ∈ W2 is the unique inverse of
2 for any Wn. On the other hand, 3 will not have an inverse in any Wn. Now, let 2−1 = 0.5,
then (0.5)−1is actually the following set {2, 2.01, 2.02, 2.03, 2.04, 2.05, 2.06, 2.07, 2.08, 2.09} ∈ W2.
Therefore, (2−1)

−1
is not necessarily 2, hence all we can claim is that if x−1 exists, then x ∈{

(x−1)
−1
}
. Further, if an inverse of an element exists in Wn, it does not necessarily exist

in Wm for m 6= n, independent of the order of mand n, e.g. if 0.91 ∈ W2, then (0.91)−1 =
{1.1, 1.11, 1.12, 1.13, 1.14, 1.15, 1.16, 1.17, 1.18, 1.19} ∈ W2, but (0.91)−1 /∈ W4, on the other
hand, 16−1 = 0.0625 ∈ W4, but 16−1 /∈ W2.

6. Square roots do not necessarily exist. Some examples are, if 4 ∈ Wn, then
√

4 = 2 for
any n and

√
3 does not exist in n = 2. To show that, consider 1.75×2 1.75 = (1 + 0.7 + 0.05) ·

(1 + 0.7 + 0.05) = 1 + 0.7 + 0.05 + 0.7 + 0.49 + 0.05 = 2.99 and

1.76×2 1.76 = (1 + 0.7 + 0.06) · (1 + 0.7 + 0.06) = 1 + 0.7 + 0.06 + 0.7 + 0.49 + 0.06 = 3.01.

Further, if a square root of an element exists in Wn, it does not necessarily exist in Wm

for m 6= n, independent of the order of m and n, e.g.
√

2 = 1.42 ∈ W2, since 1.42 ×2 1.42 =
(1 + 0.4 + 0.02) · (1 + 0.4 + 0.02) = 1 + 0.4 + 0.02 + 0.4 + 0.16 + 0.02 = 2, but

√
2 /∈ V4,

since 1.4143×41.4143 = (1 + 0.4 + 0.01 + 0.004 + 0.0003)·(1 + 0.4 + 0.01 + 0.004 + 0.0003) =
1.9999

and 1.4144×41.4144 = 2.0001. Also,
√

1.01 = 1.005 ∈ W4, since 1.005×41.005 = (1 + 0.005)·
(1 + 0.005) = 1 + 0.005 + 0.005 = 1.01, but

√
1.01 /∈ W2, since 1 ×2 1 = 1 and 1.01 ×2 1.01 =

(1 + 0.01) · (1 + 0.01) = 1 + 0.01 + 0.01 = 1.02.

Next, some basic theorems can be stated for Wn:
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1. Any Wn has zero divisors: 0. 0...0︸︷︷︸
n−1

1×n 0. 0...0︸︷︷︸
n−1

1 = 0;

2. If p ∈ Wn with p 6= 2, 5 a prime in the usual sense, then p−1 /∈ Wn for any Wn;

3. ∀x, y ∈ Wn with x, y ≥ 0, x− y ∈ Wn.

4. If x, y, t, u ∈ Wn and x ≥ t ≥ 0 and y ≥ u ≥ 0 and x ×n y ∈ Wn, then t ×n u ∈ Wn and
x×n y ≥ t×n u

5. If given a ∈ Wn such that there is a unique a−1 ∈ Wn, then |a| ≥ 1;

6. If |a| < 1 and a−1 exists, then |{a−1}| > 1;

7. If |{a−1}| > 1, then |a| < 1.

Let's consider now additional valuable properties of introduced arithmetic.

1. Standard multiplications identities become wrong, for example

(x+ y)2 6= x2 + 2 (xy) + y2

.

We have

Theorem 1.4. P ((a+n b)×n (a+n b) = (a×n a+n 2×n (a×n b)) +n b×n b) < 1, where P is
a probability. We can see a proof below. Let n = 2. Then

1. Left side of equality is (1.32 +2 2.43) ×2 (1.32 +2 2.43) = 3.75 ×2 3.75 = 13.99, right side
consists from two parts. First, 1.32×2 1.32 = 1.73; second, 2×2 (1.32×2 2.43) = 6.38, and
�nally 2.43×2 2.43 = 5.88. That means 1.73 +2 6.38) +2 5.88 = 13.99. I.e left side equals
to right. But now let's consider the following calculations.

2. Left side of equality is (1.32 +2 2.79) ×2 (1.32 +2 2.79) = 4.11 ×2 4.12 = 16.89, right side
consists from two parts. First, 1.32×2 1.32 = 1.73; second, 2×2 (1.32×2 2.79) = 7.28, and
�nally 2.79×2 2.79 = 7.65. That means 1.73 +2 7.28 +2 7.65 = 16.66. I.e left side does not
equal to right.

Let's consider now a random variable

δ1 = (a+n b)×n (a+n b)− ((a×n a+n 2×n (a×n b)) +n (b×n b))

where a, b ≥ 0, and δ1, and all elements of right side belong to Wn. Let's n = 2. Using direct
calculation we can build F1(x) - distribution function of δ1, where

F1(x) = P (δ1 < x)

, P is a probability. Graph of F1(x) you can see on Fig. 1.
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Figure 1. Graph F1.

General proof for Wn you can see below. If a, b non-negative integers in Wn and (a +n

b) ×n (a +n b) ∈ Wn, then δ1 = 0. let's consider now a = 0. 9 . . . 9︸ ︷︷ ︸
n

and b = 0. 0 . . . 08︸ ︷︷ ︸
n

. Then

a+n b = 1. 0 . . . 07︸ ︷︷ ︸
n

and (a+n b)×n (a+n b) = 1. 0 . . . 07︸ ︷︷ ︸
n

×n1. 0 . . . 07︸ ︷︷ ︸
n

= 1. 0 . . . 014︸ ︷︷ ︸
n

, but a×n a < 1,

b×n b = 0, and 2×n (a×n b) = 0. I.e. δ1 6= 0.

2. We have also the following theorem.

Theorem 1.5.

P (c×n (a+n b) = c×n a+n c×n b) < 1

, where P is a probability. Below you can see a proof. Let's n = 2. Then

1. Left side of equality is 2 ×2 (3 +2 6) = 2 ×2 9 = 18, right side consists from two parts.
First, 2×2 3 = 6, then 2×2 6 = 12 and 6 +2 12 = 18 I.e. left side equals to right. But go
to next calculations.

2. Left side of equality is 2.41×2 (3.14 +2 0.58) = 2.41×2 3.72 = 8.95, right side consists from
two parts. First, 2.41×2 3.14 = 7.55, then 2.41×2 0.58 = 1.36 è 7.55 +2 1.36 = 8.91. I.e.
left side does not equal to right.

Let's consider a random variable

δ2 = c×n (a+n b)−n (c×n a+n c×n b)
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Figure 2. Graph F2.

where a, b, c ≥ 0, and δ2 and all elements of right side belong to Wn. Let's n = 2. Using direct
calculations we can build F2(x) - distribution function of δ2, where F2(x) = P (δ2 < x), where
P is a probability. Graph of F2(x) you can see on Fig. 2.

General proof for Wn you can see below. If a, b, c - non-negative integers in Wn and a ×n
(b ×n c) ∈ Wn, then δ2 = 0. Let's consider now a = 2, b = 0. 9 . . . 9︸ ︷︷ ︸

n

and c = 0. 0 . . . 01︸ ︷︷ ︸
n

. Then

b×n c = 0, a×n (b×n c) = 0, a×n b = 1. 9 . . . 98︸ ︷︷ ︸
n

, and (a×n b)×n c = 0. 0 . . . 01︸ ︷︷ ︸
n

. I.e. δ2 6= 0.

3.

Theorem 1.6. Let's
δ3 = c×n (a×n b)−n (c×n a)×n b

. Then 0 < P (δ3 = 0) < 1, where P is a probability.

You can see a proof of this theorem below. Let's n = 2. Then

1. Left side of this equality is 2×2 (3×2 6) = 2×2 18 = 36, right side consists from two parts
. First, 2 ×2 3 = 6, then 6 ×2 6 = 36. I.e left side equals to right. But let's consider the
following calculations.

2. Left side is 2.41 ×2 (3.14 ×2 0.58) = 2.41 ×2 1.79 = 4.27, for right side we get �rst ,
2.41×2 3.14 = 7.55, then 7.55×2 0.58 = 4.31. And left side does not equal to right Let's
consider a random variable

δ3 = c×n (a×n b)−n (c×n a)×n b
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Figure 3. Graph F3.

, where a, b, c ≥ 0, and δ3 and all elements of right side belong to Wn. If we take n = 2,
then using direct calculations we can build F3(x) - distribution function of δ3, where
F3(x) = P (δ3 < x), and P is a probability. Graph of F3(x) you can see on Fig. 3.
General proof for Wn you can see below. If a, b, c are non-negative integers in Wn and
c×n (a×n b) ∈ Wn, then δ3 = 0. Let's consider c = 2, a = 0. 9 . . . 99︸ ︷︷ ︸

n

è b = 0. 0 . . . 01︸ ︷︷ ︸
n

. Then

δ3 = 2×n (0.9 . . . 99×n 0.0 . . . 01)−n (2×n 0.9 . . . 99)×n 0.0 . . . 01 =

= 0−n 0.0 . . . 01 = −0.0 . . . 01 6= 0
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