
2. OBSERVER'S MATHEMATICS APPLICATIONS TO

CLASSICAL MATHEMATICS PROBLEMS

2.1 Analogy of Fermat's, Mersenne's and Waring's Problems

We proved the following four Theorems:

Theorem 2.1. (Analogy of Fermat's Last Problem). For any integer n, n ≥ 2, and for any
integer m, m ≥ 3, m ∈ Wn (see below for the de�nition of Wn) there exist positive a, b, c ∈ Wn,
such that am +n b

m = cm (operation +n is de�ned below).

For example, if n = 2 we can calculate that

13+2 1
3 = 1.283

13+2 1.21
3 = 1.413

1.23+2 1.03
3 = 1.413

Note that the main reason of cardinal di�erence between standard Mathematics and Ob-
server's Mathematics results is the following. The negative solution of classical Fermat's problem
requires Axiom of Choice to be valid. But in Observer's Mathematics this Axiom is invalid.

Theorem 2.2. (Analogy of Mersenne's numbers problem). There exist integers n, k ≥ 2,
Mersenne's numbers Mk, with {k,Mk} ∈ Wn, and positive a ∈ Wn, such that Mk = a2.

Theorem 2.3. (Analogy of Fermat's numbers problem). There exist integers n, k ≥ 2, Fermat's
numbers Fk, {k, Fk} ∈ Wn, and positive a ∈ Wn, such that Fk = a2.

Theorem 2.4. (Analogy of Waring's problem). For any integer k, k ≥ 2, there exist integer n,
n ≥ 2, (k ∈ Wn) and some x ∈ Wn such that any equality of the form x = ak1 + ak2 + . . .+ akl is
not possible for any integer l ∈ Wn and any positive numbers a1, a2, . . ., al ∈ Wn.

2.2 Analogy of Hilbert's Tenth Problem

First we are looking for the solution of equation

x3 + y3 + z3 = 33

inWn, n ≥ 2, i.e. we have to �nd x, y, z ∈ Wn such that ((x×nx)×nx), ((y×ny)×ny), ((z×nz)×n
z), ((x×nx)×nx)+n((y×ny)×ny) ∈ Wn, and (((x×nx)×nx)+n((y×ny)×ny))+n((z×nz)×nz) =
33. We provide several solutions below:

1. For n = 2, the solutions are:

(a) {1.72, 1, 3},
(b) {−1.28, 2, 3},
(c) {2.37, 1.55, 2.54}.

2. For n = 3, the solutions are:
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(a) {3.208, 0, 0},
(b) {3.208, y,−y} for any y ∈ W3 such that (y ×3 y)×3 y, (y ×3 y)×3 y + 33 ∈ W3,

(c) {2.887, 1, 2}.

3. For n = 4, a possible solution is: {2.4102,−2, 3}.

4. For n = 5, a possible solution is: {4.12129, 3,−4}.

5. For n = 6, the solutions are:

(a) {2.8845, 1, 2},
(b) {1.709981, 1, 3}.

6. For n = 9, a possible solution is: {2.571281595,−1,−1}.

7. For n = 10, a possible solution is: {3.8929964162, 1,−3}.

8. For n = 11, a possible solution is: {3.89299641591, 1,−3}.

9. For n = 12, a possible solution is: {3.659305710025,−2,−2}.

10. For n = 13, the solutions are:

(a) {2.9240177382132, 0, 2},
(b) {2.9240177382132, 2, 0}.

11. For n = 14, the solutions are:

(a) {4.08165510191737,−2,−3},
(b) {4.71769398031657,−2,−4}.

12. For n = 15, the solutions are:

(a) {2.410142264175234,−2, 3},
(b) {1.259921049894891, 2, 3},
(c) {4.081655101917351,−2,−3}.

InWn, from theWn-observer's point of view (Wn-observer is "naive" inWn), Hilbert's Tenth
Problem is formulated classically: "Is there an algorithm that takes as input a multivariable
polynomial f(x1, . . . , xk) with integer coe�cients and outputs YES or NO according to whether
there exist integers a1, . . . , ak such that f(a1, . . . , ak) = 0." And Wn-observer as "naive" one has
and understands proof, which Yu. Matiyasevich based on works of M. Davis, H. Putham, and
J. Robinson made in 1970, and shown that no such algorithm exists. Consider now what does
it mean from Wm-observer's point of view (m > n).

First we address the question "what is a polynomial in Wn" from the point of view of Wm-
observer, with m > n?
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Definition 2.5. Multivariable (k - variables) polynomial f(x1, . . . , xk) with degree q in Wn is
given by:

∑q
p=0

n
∑

i1+...+ik=p
nai1...ik ×n (. . . (. . . (x1 ×n x1)×n . . . )×n x1︸ ︷︷ ︸

i1

)×n . . .

×n(. . . (xk ×n xk)×n . . .)×n xk︸ ︷︷ ︸
ik

) where k ∈ N ∩Wn, q, i1, . . . , ik ∈ (N ∪ 0) ∩Wn, with N -

the set of all positive integers, and ai1...ik , x1, . . . , xk and entries of all parentheses are in Wn.

Theorem 2.6. For any positive integers m,n, k ∈ Wn, n ∈ Wm, m > log10(1 + (2 · 102n −
1)k), from the point of view of the Wm−observer, there is an algorithm that takes as input a
multivariable polynomial f(x1, . . . , xk) of degree q in Wn and outputs YES or NO according to
whether there exist a1, . . . , ak ∈ Wn such that f(a1, . . . , ak) = 0.

Note, that, for example, for n = 2 and k = 3, this problem has negative solution from the
point of view of not only W2-observer, but also for W3,W4,. . .,W12-observers and only from the
point of view of Wm-observer with m ≥ 13 this problem has positive solution.

Therefore, Hilbert's tenth problem in Observer's Mathematics has positive solution. We
think that Hilbert expected a positive answer for his tenth problem. Note, that the main reason
of cardinal di�erence between standard Mathematics and Observer's Mathematics results is the
following. The negative solution of classical tenth problem requires Axiom of Choice to be valid.
But in Observer's Mathematics this Axiom is invalid.

2.3 Lehmer's Number in Observer's Mathematics

Lehmer's number, α ≈= 1.17628, is the largest real root of the polynomial

f(x) = x10 + x9 − x7 − x6 − x5 − x4 − x3 + x+ 1

. This number appears in various contexts in number theory and topology as the (sometimes
conjectural) answer to natural questions involving notions of "minimality" and "small complex-
ity".

A Salem polynomial is a monic irreducible reciprocal polynomial φ(x) in Z[x] such that
φ(x) = 0 has exactly two real roots α > 1 and 1/α o� the unit circle S1 := {z ∈ C||z|}. Is is
then of even degree. A Salem number is the unique real root α > 1. In other words, a Salem
number of degree 2n is a real algebraic integer α > 1 whose Galois conjugates consist of 1/α
and 2n− 2 imaginary numbers on S1.

There are 47 known Salem numbers less than 1.3. Of these, 45 exhaust the possibilities with
α < 1.3 and degree d < 42. Of these, merely 6 have degree d < 12. Of these 6, we noted that all
but one solve equation of the very simple form x4+m = Q(1/x)

Q(x)
with m > 0 and Q(x) = x3−x−1.

The case m = 1 gives Lehmer's number �eld. The minimal polynomials of the �rst �ve Salem
numbers in this family are

P1(α) = α10 + α9 − α7 − α6 − α5 − α4 − α3 + α + 1

P2(α) = α10 − α7 − α5 − α3 + 1
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P3(α) = α10 − α8 − α5 − α2 + 1

P4(α) = α8 − α5 − α4 − α3 + 1

P5(α) = α10 − α8 − α7 + α5 − α3 − α2 + 1

with approximate numerical roots - and hence Mahler measures - given by

α1 = 1.1762808182599175065440703384 . . .

α2 = 1.2303914344072247027901779389 . . .

α3 = 1.2612309611371388519466715030 . . .

α4 = 1.2806381562677575967019025327 . . .

α5 = 1.2934859531254541065199098837 . . .

Prior to understanding the Lehmer-Salem numbers in the setting of Observer's Mathematics,
we �rst address the question "what is a polynomial in Wn?".

Definition 2.7. Polynomial f(x) with degree q in Wn is given by the following formula:

f(x) =

q∑
p=0

nap ×n (. . . (x×n x)×n x)×n . . .×n x)

where q, ap, x and entries of all parentheses are in Wn, p = 0, 1, . . . , q.

Note that exponent is not an associative operation. For example, for n = 2, we have
1.49×21.49 = 2.14, 1.49×22.14 = 3.16, 1.49×23.16 = 4.67, i.e., ((1.49×21.49)×21.49)×21.49 =
4.67 while (1.49×2 1.49)×2 (1.49×2 1.49) = 4.57.

In Wn we can de�ne a root of a polynomial f(x) ∈ Wn as the number x0 ∈ Wn such that
|f(x)| ≤ 0. 0 . . . 01︸ ︷︷ ︸

n

.

Theorem 2.8. There are some n ∈ N such that the minimal polynomial of the �rst �ve Salem
numbers have the roots in Wn. Note that we consider P1(α), P3(α), P4(α) as the polynomial in
Wn in the sense of the de�nition above, i.e., we understand that xk = (. . . (x×n x)×n . . .×n x︸ ︷︷ ︸

k

)

and
∑

=
∑

n.

2.4 Euler Brick and Perfect Cuboid problems

An Euler Brick is just a cuboid, or a rectangular box, in which all of the edges (length, depth, and
height) have integer dimensions and in which the diagonals on all three sides are also integers.
So if the length, depth and height are a, b, and c respectively, then a, b, and c are integers,
as are the quantities

√
a2 + b2,

√
b2 + c2 and

√
c2 + a2. The unsolved problem is to �nd a four

dimensional Euler Brick, in which the four sides a, b, c, and d are integers, as are the six face
diagonals

√
a2 + b2,

√
a2 + c2,

√
a2 + d2,

√
b2 + c2,

√
b2 + d2 and

√
c2 + d2, or prove that such a

cuboid cannot exist.
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We reformulate 4D Euler Brick problem for Observer's Mathematics in the following way.
To �nd some positive integer n and a 4D cuboid, in which the four sides a, b, c, d are integers in
Wn, and the six face diagonals

√
a2 + b2,

√
a2 + c2,

√
a2 + d2,

√
b2 + c2,

√
b2 + d2 and

√
c2 + d2

are also in Wn, or prove that such cuboid cannot exist.

Theorem 2.9. If a = b = c = d = 1, then the following condition holds true in W2

√
a2 + b2 =

√
a2 + c2 =

√
a2 + d2 =

√
b2 + c2 =

√
b2 + d2 =

√
c2 + d2 = 1.42 ∈ W2

Also, the following condition holds true in W3:

√
a2 + b2 =

√
a2 + c2 =

√
a2 + d2 =

√
b2 + c2 =

√
b2 + d2 =

√
c2 + d2 = 1.416 ∈ W3

The above theorem implies that this problem has a positive solution in Observer's Mathematics.

Another unsolved problem is to �nd a perfect cuboid, which is an Euler Brick in which the
space diagonal, that is, the distance from any corner to its opposite corner, given by the formula√
a2 + b2 + c2, is also an integer, or prove that such a cuboid cannot exist.

We reformulate perfect cuboid problem for Observer's Mathematics in the following way. To
�nd some positive integer n and a perfect cuboid, in which the three sides a, b, c are integers
in Wn, and the three face diagonals

√
a2 + b2,

√
a2 + c2 and

√
b2 + c2 ∈ Wn, and in which the

space diagonal, that is, the distance from any corner to its opposite corner, given by the formula√
a2 + b2 + c2 ∈ Wn, or prove that such a cuboid cannot exist.

Theorem 2.10. If a = b = c = 1, then the following condition holds true in W2:

√
a2 + b2 =

√
a2 + c2 =

√
b2 + c2 =

√
2 = 1.42 ∈ W2

However,
√
a2 + b2 + c2 =

√
3 does not exist. Also, the following condition holds true in W3

√
a2 + b2 =

√
a2 + c2 =

√
b2 + c2 =

√
2 = 1.416 ∈ W3

And
√
a2 + b2 + c2 =

√
3 = 1.734 ∈ W3 The above theorem implies that this problem has a

positive solution in Observer's Mathematics.

2.5 Square Peg Problem

Every continuous simple closed curve in the plane de�ned by

γ : S1 → R2

contains four points that are the vertices of a square. Is it true or not true? Let's take the
Observer's Math point of view. Let's consider the identity γ : S1 → S2 givne by γ(x, y) = (x, y)
with (x, y) ∈ S1. In this case one of vertices (if such square exists) has to be the intersection
of line y = x and circle x2 +n y

2 = R2. Let's note we assume that circle has a center in (0, 0)
and square has edges parallel to coordinate axes. In classical math for any square with vertices
(x0, x0), (−x0, x0), (x0,−x0), and (−x0,−x0) the circle containing these points always exists.
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Theorem 2.11. . In Observer's Mathematics, for any square with vertices (x0, x0), (−x0, x0),
(x0,−x0), and (−x0,−x0), the circle containing these points does not always exist.

Proof. If x0, R ∈ Wn, x0 = 1, 2 = R2, then we have

n = 2→ R = 1.42

n = 3→ R = 1.416

n = 4→ R does not exist

n = 5→ R = 1.41423

n = 6→ R = 1.414216

n = 7→ R = 1.4142139

n = 8→ R does not exist

n = 9→ R = 1.414213567

n = 10→ R does not exist

If x0, R ∈ Wn, x0 = 2, 8 = R2, than we have

n = 2→ R = 2.84

n = 3→ R does not exist

n = 4→ R = 2.8287

n = 5→ R = 2.82846

n = 6→ R does not exist

n = 7→ R = 2.8284274

n = 8→ R = 2.82842717

n = 9→ R = 2.828427129

n = 10→ R does not exist

If x0, R ∈ Wn, x0 = 3, 18 = R2, than we have

n = 2→ R does not exist

n = 3→ R = 4.243

n = 4→ R = 4.2427

n = 5→ R = 4.24265

n = 6→ R does not exist

n = 7→ R = 4.2426408

n = 8→ R = 4.2426407
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n = 9→ R = 4.242640689

n = 10→ R does not exist

If x0 , R ∈ Wn, x0 = 4, 32 = R2, than we have

n = 2→ R does not exist

n = 3→ R = 5.658

n = 4→ R does not exist

n = 5→ R does not exist

n = 6→ R does not exist

n = 7→ R does not exist

n = 8→ R does not exist

n = 9→ R does not exist

n = 10→ R does not exist

If x0 , R ∈ Wn, x0 = 5, 50 = R2, than we have

n = 2→ R does not exist

n = 3→ R does not exist

n = 4→ R does not exist

n = 5→ R does not exist

n = 6→ R does not exist

n = 7→ R = 7.0710679

n = 8→ R does not exist

n = 9→ R does not exist

n = 10→ R does not exist

Theorem 2.12. In Observer's Mathematics for any circle the square with vertices (x0, x0),
(−x0, x0), (x0,−x0), and (−x0,−x0) does not always exist.

Proof. If x0, R ∈ Wn, R = 1, 2×n x20 = 1, than we have

n = 2→ x0 does not exist

n = 3→ x0 does not exist

n = 4→ x0 does not exist

n = 5→ x0 does not exist
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n = 6→ x0 does not exist

n = 7→ x0 does not exist

n = 8→ x0 does not exist

n = 9→ x0 = 0.70710679∗

where ∗ means any digit ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

n = 10→ x0 does not exist

That means that the Square Peg Problem has negative solution in Observer's Mathematics.

2.6 Classical geometric problem of angle trisection

Consider the equation
x3 − 3x− 2 cosα = 0

Note that if we take unit circle on the real plane x2 + y2 = 1 and put cosα = z(z ∈ (0, 1)) for
some Wn, then sinα may not exist. For example, in W2, if

cosα = 0.6, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69

, then
sinα = 0.8, 0.81, 0.82, 0.83, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89

though these 10 di�erent sinα values correspond to each cos a value. Also, If

cosα = 0.8, 0.81, 0.82, 0.83, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89

then
sinα = 0.6, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69

, though these 10 di�erent sinα values correspond to each cosα value. For any other possible
positive values of cosα in W2 the sinα does not exist.

Theorem 2.13. For any possible positive value of cosα in W2 equation x3 − 3x − 2 cosα = 0
does not have a solution in W2.

Theorem 2.14. For cosα = 0.492 ∈ W3, in this case

sinα = 0.88, 0.881, 0.882, 0.883, 0.884, 0.885, 0.886, 0.887, 0.888, 0.889

then the solution of equation x3 − 3x− 2 cosα = 0 exists and it is x = 1.88 in W3.
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