
3. OBSERVER'S MATHEMATICS APPLICATIONS TO

QUANTUM MECHANICS

3.1 Nadezhda e�ect

We consider an open square Q centered at the origin with sides of length 2 located on a plane
Wn ×Wn. We will calculate the distance D between the origin (0, 0) and any point of Q as
follows. D = ρ((0, 0), (x, y)) =

√
x2 + y2 =

√
x×n x+n y ×n y, where

√
a = b means b×n b = a,

x, y ∈ Q, i.e., |x| < 1, |y| < 1.

The �gure below contains an illustration of the fact that for some points on Wn ×Wn the
concept of distance from the origin does not exist; while for others it does exist. The illustration
below is for n = 3 (Q ⊂ W3×W3). Points with no distance to the origin are indicated by black,
while points where distance from the origin exists are indicated in white.

This means that the distance D does not always exist, i.e., not every segment on a plane
has a length. This phenomenon occurs for all n. We call the presence of these "black holes"
as the Nadezhda E�ect. This e�ect gives us new possibilities for discovering physical processes
and developing their mathematical models.

Theorem 3.1. Nadezhda E�ect Theorem. For any positive integer n and Wn, consider
the plane Wn ×Wn = {(x, y)}, x, y ∈ Wn with standard Euclidean metric d2 ((x1, y1), (x2, y2)) =
(x1 − x2)2 + (y1 − y2)2. Next, consider any line y = k ×n x, with y, k, x ∈ Wn. Then there is
some point (x0, y0) = (x0, k ×n x0) ∈ Wn ×Wn such that d((x0, y0), (0, 0)) does not exist.

Lemma 1. If y = 0. 0...01︸ ︷︷ ︸
n

×nx, then there exists x0 ∈ Wn such that ρ does not exist, where

ρ =
√
x0 ×n x0 + (0. 0...01︸ ︷︷ ︸

n

×nx0)×n (0. 0...01︸ ︷︷ ︸
n

×nx0)
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.

Lemma 2. If y = k×n x with 0 ≤ k ≤ 1, then there exists x0 ∈ Wn such that ρ does not exist,
where

ρ =
√
x0 ×n x0 + (k ×n x0)×n (k ×n x0)

.

Lemma 3. If y = 99...9︸ ︷︷ ︸
n

. 99...9︸ ︷︷ ︸
n

×nx, then there exists x0 ∈ Wn such that ρ does not exist, where

ρ =
√
x0 ×n x0 + (99...9︸ ︷︷ ︸

n

. 99...9︸ ︷︷ ︸
n

×nx0)×n (99...9︸ ︷︷ ︸
n

. 99...9︸ ︷︷ ︸
n

×nx0)

.

Lemma 4. If y = k ×n x with 1 < k ≤ 99...9︸ ︷︷ ︸
n

. 99...9︸ ︷︷ ︸
n

, then there exists x0 ∈ Wn such that ρ

does not exist, where
ρ =

√
x0 ×n x0 + (k ×n x0)×n (k ×n x0)

.

3.2 Photoelectric e�ect from Observer's Mathematics point of view

In 1922, Albert Einstein received the Nobel Prize - not for his relativity theory, but for his
interpretation of the photoelectric e�ect as being due to particle-like photons striking the surfaces
of metals and ejecting electrons. But ironically it has been cogently argued that Einstein's
conclusions were not fully justi�ed. The theory of Lamb and Scully treated atoms quantum-
mechanically, but regarded light as being a purely classical electromagnetic wave with no particle
properties. Their conclusion was that the photoelectric e�ect does not constitute proof of the
existence of photons.

Experimenters, therefore, led to design an experiment that asks whether light can be in two
di�erent places at the same time. The method is to place two detectors at widely separated
locations, illuminate them both with the same light source, and ask whether they click at the
same instant. Within the particle picture of light, they should not. The experimental apparatus
required for such an experiment has to include: a light source, a half-silvered mirror and two
detectors. Light falls on the half-silvered mirror, which acts as a beam splitter. If the incident
light intensity is I, then behind the mirror the detectors each register an intensity I

2
. Each

detector responds with �click�. Experimenters correlate these clicks by connecting them to a
coincidence counter, which records a count only if both detectors click at the same moment. The
results of such an experiment are conveniently analyzed in terms of the so-called anticorrelation
parameter A:

A =
Pc
P1P2

where P1 is the experimentally measured probability of detector 1 responding, P2 is the experi-
mentally measured probability of detector 2 responding, and Pc the probability of coincidence.
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The quantity A has several properties that make it a particularly useful diagnostic in this situa-
tion. On the one hand, if light is composed of photons, the two detectors should never respond
together, making Pc zero, so that A should be zero. If, on the other hand, light has no particle-
like properties, the detectors should be perfectly capable of clicking together, and A can be
non-zero. Indeed, if the detectors turn out to click randomly and independently of one another,
experimenters can easily show that A will equal 1. Finally, a measured value of A greater than
1 would show the two detectors to be clicking together more often than purely random behavior
would allow a �clustering� tendency of the clicks.

The Hanbury-Brown and Twiss experiment was done using this idea. And they used for
anticorrelation parameter A calculation of the following formula:

A =
� I2 �
� I �2

where � I � is the average intensity over many instantaneous measurements, and � I2 �
is the average of the intensity squared. The result shows that the expected anticorrelation
parameter within the semi-classical theory (Lamb and Scully, Hanbury-Brown and Twiss) is
simply the average of I squared as compared to the square of the average of I. And it was very
easy to show that always A > 1. To see how that was done, begin with the simple case of a
beam whose intensity �uctuates between only two values, I1 and I2. De�ning x to be the ratio
I2
I1
, the averages are

� I2 �=
1

2
(I21 + I22 ) =

1

2
(I21 )(1 + x2)

and

� I �2=

(
1

2
(I1 + I2)

)2

= I21

(
(1 + x)

2

)2

But
1 + x2

2
≥
(

1 + x

2

)2

because
2(1 + x2) ≥ (1 + x)2

and
(1− x)2 ≥ 0

This result can be extended to a beam whose intensity �uctuates between any number of values
by using Cauchy-Schwartz inequality:

� I2 �≥� I �2

We now have the following

Theorem 3.2. There are some values of light intensity where anticorrelation parameter A ∈
[0, 1).
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Proof. For proof it is enough to �nd a corresponding example. Let's take n = 2, I1 = 0.2,
and I2 = 0.1. We then have the following:

A×2 ((0.5×2 (0.2 +2 0.1))×2 (0.5×2 (0.2 +2 0.1))) = 0.5×2 ((0.2×2 0.2) +2 (0.1×2 0.1))

which leads to
A×2 (0.15×2 0.15) = 0.5×2 (0.04 +2 0.01)

which leads to
A×2 0.01 = 0

i.e. A ∈ [0, 1).

Theorem 3.3. There are some values of light intensity where anticorrelation parameter A = 1.

Proof. For proof it is enough to �nd corresponding example. Let's take n = 2, I1 = 1.01,
and I2 = 1.02. We then have the following:

A×2 ((0.5×2 (1.01 +2 1.02))×2 (0.5×2 (1.01 +2 1.02)) = 0.5×2 ((1.01×2 1.01) +2 (1.02×2 1.02))

which leads to
A×2 (1×2 1) = 0.5×2 (1.02 +2 1.04)

which leads to
A×2 1 = 1

i.e. A = 1.

Theorem 3.4. There are some values of light intensity where anticorrelation parameter A > 1.

Proof. For proof it is enough to �nd corresponding example. Let's take n = 2, I1 = 1.11,
I2 = 1.08. We then have the following:

A×2 ((0.5×2 (1.11 +2 1.08))×2 (0.5×2 (1.11 +2 1.08)) = 0.5×2 ((1.11×2 1.11) +2 (1.08×2 1.08))

which leads to
A×2 (1.05×2 1.05) = 0.5×2 (1.23 +2 1.16)

which leads to
A×2 1.1 = 1.15

i.e. A = 1.05.

These theorems show that with enough small intensities Einstein interpretation of the pho-
toelectric e�ect as being due to particle-like photons striking the surfaces of metals and ejecting
electrons is correct.
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3.3 Dirac Equation for Free Electron

Let's consider Dirac equations for free electron in classical mathematics.

−m0cψ2 = ~
(
∂ψ1̂

∂x3
+

∂ψ1̂

∂x0
+

∂ψ2̂

∂x1
+ i

∂ψ2̂

∂x2

)
m0cψ1 = ~

(
∂ψ1̂

∂x1
− i∂ψ1̂

∂x2
− ∂ψ2̂

∂x3
+

∂ψ2̂

∂x0

)
−m0cψ2̂ = ~

(
∂ψ1

∂x3
+ ∂ψ1

∂x0
+ ∂ψ2

∂x1
− i∂ψ2

∂x2

)
m0cψ1̂ = ~

(
∂ψ1

∂x1
+ i∂ψ1

∂x2
− ∂ψ2

∂x3
+ ∂ψ2

∂x0

)
where x0 = ct, x1 = x, x2 = y, x3 = z, ~ = h

2π
, h is the Planck Constant, and ~ =

1.054 . . .× 10−34 m2kg/s, c is the speed of light, and ψ1, ψ2, ψ1̂, ψ2̂ are the spinors.

Now, consider the same equations in Observer's Mathematics, see ?. Ψ1,Ψ2 ∈ Wn. Put
ψ1 = ψa1 + iψb1, ψ2 = ψa2 + iψb2, ψ1̂ = ψa

1̂
+ iψb

1̂
, and ψ2̂ = ψa

2̂
+ iψb

2̂
.

After that, we have the following eight equations:

1. −(m0 ×n c)×n ψa2 = ~×n
(((

∂ψa
1̂

∂x3
+n

∂ψa
1̂

∂x0

)
+n

∂ψa
2̂

∂x1

)
−n

∂ψb
2̂

∂x2

)
2. −(m0 ×n c)×n ψb2 = ~×n

(((
∂ψb

1̂

∂x3
+n

∂ψb
1̂

∂x0

)
+n

∂ψb
2̂

∂x1

)
+n

∂ψb
2̂

∂x3

)
3. (m0 ×n c)×n ψa1 = ~×n

(((
∂ψa

1̂

∂x1
+n

∂ψb
1̂

∂x2

)
−n

∂ψa
2̂

∂x3

)
+n

∂ψa
2̂

∂x0

)
4. (m0 ×n c)×n ψb1 = ~×n

(((
∂ψb

1̂

∂x1
−n

∂ψa
1̂

∂x2

)
−n

∂ψb
2̂

∂x3

)
+n

∂ψb
2̂

∂x0

)
5. −(m0 ×n c)×n ψa2̂ = ~×n

(((
∂ψa

1

∂x3
+n

∂ψa
1

∂x0

)
+n

∂ψa
2

∂x1

)
+n

∂ψb
2

∂x2

)
6. −(m0 ×n c)×n ψb2̂ = ~×n

(((
∂ψb

1

∂x3
+n

∂ψb
1

∂x0

)
+n

∂ψb
2

∂x1

)
−n ∂ψb

2

∂x2

)
7. (m0 ×n c)×n ψa1̂ = ~×n

(((
∂ψa

1

∂x1
−n ∂ψb

1

∂x2

)
−n ∂ψa

2

∂x3

)
+n

∂ψa
2

∂x0

)
8. (m0 ×n c)×n ψb1̂ = ~×n

(((
∂ψb

1

∂x1
+n

∂ψa
1

∂x2

)
−n ∂ψb

2

∂x3

)
+n

∂ψb
2

∂x0

)
We now have the following theorems.

Theorem 3.5. If m0 is small enough such that m0 ×n c = 0 and n > 35 then((
∂ψa

1̂

∂x3
+n

∂ψa
1̂

∂x0

)
+n

∂ψa
2̂

∂x1

)
−n

∂ψb
2̂

∂x2
= 0.

n︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸
n−35

∗ . . . ∗

((
∂ψb

1̂

∂x3
+n

∂ψb
1̂

∂x0

)
+n

∂ψb
2̂

∂x1

)
+n

∂ψb
2̂

∂x3
= 0.

n︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸
n−35

∗ . . . ∗
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((
∂ψa

1̂

∂x1
+n

∂ψb
1̂

∂x2

)
−n

∂ψa
2̂

∂x3

)
+n

∂ψb
2̂

∂x0
= 0.

n︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸
n−35

∗ . . . ∗

((
∂ψb

1̂

∂x1
−n

∂ψb
1̂

∂x2

)
−n

∂ψb
2̂

∂x3

)
+n

∂ψb
2̂

∂x0
= 0.

n︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸
n−35

∗ . . . ∗

((
∂ψa

1

∂x3
+n

∂ψa
1

∂x0

)
+n

∂ψa
2

∂x1

)
+n

∂ψb
2

∂x2
= 0.

n︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸
n−35

∗ . . . ∗

((
∂ψb

1

∂x3
+n

∂ψb
1

∂x0

)
+n

∂ψb
2

∂x1

)
−n ∂ψb

2

∂x2
= 0.

n︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸
n−35

∗ . . . ∗

((
∂ψa

1

∂x1
−n ∂ψb

1

∂x2

)
−n ∂ψa

2

∂x3

)
+n

∂ψa
2

∂x0
= 0.

n︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸
n−35

∗ . . . ∗

((
∂ψb

1

∂x1
+n

∂ψa
1

∂x2

)
−n ∂ψb

2

∂x3

)
+n

∂ψb
2

∂x0
= 0.

n︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸
n−35

∗ . . . ∗

where any ∗ ∈ {0, 1, . . . , 9} and is random.

Theorem 3.6. Let n > 35, 0 < k < n, and m0 ×n c = 0.

n︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸

k

∗ . . . ∗, also let

((
∂ψa

1̂

∂x3
+n

∂ψa
1̂

∂x0

)
+n

∂ψa
2̂

∂x1

)
−n

∂ψb
2̂

∂x2
= 0.

n︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸
n−35

∗ . . . ∗

((
∂ψb

1̂

∂x3
+n

∂ψb
1̂

∂x0

)
+n

∂ψb
2̂

∂x1

)
+n

∂ψb
2̂

∂x3
= 0.

n︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸
n−35

∗ . . . ∗

((
∂ψa

1̂

∂x1
+n

∂ψb
1̂

∂x2

)
−n

∂ψa
2̂

∂x3

)
+n

∂ψb
2̂

∂x0
= 0.

n︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸
n−35

∗ . . . ∗

((
∂ψb

1̂

∂x1
−n

∂ψb
1̂

∂x2

)
−n

∂ψb
2̂

∂x3

)
+n

∂ψb
2̂

∂x0
= 0.

n︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸
n−35

∗ . . . ∗

((
∂ψa

1

∂x3
+n

∂ψa
1

∂x0

)
+n

∂ψa
2

∂x1

)
+n

∂ψb
2

∂x2
= 0.

n︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸
n−35

∗ . . . ∗

((
∂ψb

1

∂x3
+n

∂ψb
1

∂x0

)
+n

∂ψb
2

∂x1

)
−n ∂ψb

2

∂x2
= 0.

n︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸
n−35

∗ . . . ∗

((
∂ψa

1

∂x1
−n ∂ψb

1

∂x2

)
−n ∂ψa

2

∂x3

)
+n

∂ψa
2

∂x0
= 0.

n︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸
n−35

∗ . . . ∗
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((
∂ψb

1

∂x1
+n

∂ψa
1

∂x2

)
−n ∂ψb

2

∂x3

)
+n

∂ψb
2

∂x0
= 0.

n︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸
n−35

∗ . . . ∗

where any ∗ ∈ {0, 1, . . . , 9}, then

ψa1 = 0.

n︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸
n−k

∗ . . . ∗,

ψb1 = 0.

n︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸
n−k

∗ . . . ∗,

ψa2 = 0.

n︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸
n−k

∗ . . . ∗,

ψb2 = 0.

n︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸
n−k

∗ . . . ∗,

ψa
1̂

= 0.

n︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸
n−k

∗ . . . ∗,

ψb
1̂

= 0.

n︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸
n−k

∗ . . . ∗,

ψa
2̂

= 0.

n︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸
n−k

∗ . . . ∗,

ψb
2̂

= 0.

n︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸
n−k

∗ . . . ∗

where any ∗ ∈ {0, 1, . . . , 9} and is random. Thus, ψa1 , ψ
b
1,ψ

a
2 , ψ

b
2, ψ

a
1̂
, ψb

1̂
, ψa

2̂
, and ψb

2̂
are

random variables.

3.4 Solitary waves and dispersive equations from Observer�ó

Mathematics point of view

In classical physics, it has been realized for centuries that the behavior of idealized vibrating
media (such as waves on string, on a water surface, or in air), in the absence of friction or
other dissipative forces, can be modeled by a number of partial di�erential equations, known
collectively as dispersive equations. Model examples of such equations include the following:

• The free wave equation
utt − c2∆u = 0
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where u : R× Rd → R represents the amplitude u(t, x) of a wave at a point in spacetime
with d spatial dimensions, ∆ =

∑d
j=1

δ2

δx2j
is the spatial Laplacian on Rd, utt is short for

δ2u
δt2

, and c > 0 is a �xed constant.

• The linear Schrodinger equation

i~ut +
~2

2m
∆u = V u

where u : R × Rd → R is the wave function of a quantum particle, ~,m > 0 are physical
constants and V : Rd → R is a potential function, which we assume to depend only on
the spatial variable x.

• The Airy equation
ut + uxxx = 0

where u : R×R→ R is a scalar function.

• The Korteweg-de Vries equation

ut + uxxx + 6uux = 0

which is a more re�ned version of the Airy equation in which the �rst nonlinear term is
retained.

The theory of linear dispersive equations predicts that waves should spread out and disperse
over time. However, it is a remarkable phenomenon, observed both in theory and practice, that
once nonlinear e�ects are taken into account, solitary wave and soliton solutions can be created,
which can be stable enough to persist inde�nitely. In this section we consider some properties
of these equations from Observer's Mathematics point of view.

3.4.1 Free Wave Equation

We consider the case when d = 1, i.e., u : Wn ×Wn → Wn, from Wm-observer point of view,
with m > n, whereWn×Wn means Cartesian product ofWn with itself. The free wave equation
may be written as

utt −n ((c×n c)×n uxx) = 0

Then we have the following

Theorem 3.7. Let
c = c0.c1 . . . ckck+1 . . . cn

and
uxx = ±uxx0 .uxx1 . . . uxxl u

xx
l+1 . . . u

xx
n

with 2k < n, l < n, c0 = c1 = . . . = ck = 0, ck+1 6= 0, uxx0 = uxx1 = . . . = uxxl = 0 and
u < k + l + 2, then utt = 0.

Next, we have the following

Theorem 3.8. If d0 ≥ 9 . . . 9︸ ︷︷ ︸
p

, with 0 < p ≤ n and uxx0 ≥ 9 . . . 9︸ ︷︷ ︸
q

, with 0 < q ≤ n and n < p+ q,

then there is no utt, such that utt = ((c×n c)×n uxx).
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3.4.2 Schrodinger Equation

Consider the following: −(~ ×n ~) ×n Ψxx +n ((2 ×n m) ×n V ) ×n Ψ = i((2 ×n m) ×n ~)Ψt ,
where Ψ = Ψ(x, t), ~ is the Planck's Constant, ~ = 1.054571628(53)×10−34 m2kg/s. Ψ ∈ CWn,
Ψ = Ψa + iΨb. In the following statements we speak about Ψa

xx, Ψb
xx, Ψa

t , Ψb
t , Ψa, and Ψb.

Then we have the following

Theorem 3.9. Let 36 < n < 68, m = m0.m1 . . .mkmk+1 . . .mn, with m ∈ Wn, m0 = m1 =
. . . = mk = 0, mk+1 6= 0, k + 35 < n, V = 0, then Ψt = Ψ0

t .Ψ
1
t . . .Ψ

l
tΨ

l+1
t . . .Ψn

t and Ψ0
t =

. . .Ψl
t = 0, Ψl+1

t , . . . ,Ψn
t are free and in {0, 1, . . . , 9}, where l = n− k− 36, i.e., Ψt is a random

variable, with Ψt ∈ {(0.
n︷ ︸︸ ︷

0 . . . 0︸ ︷︷ ︸
l

∗ . . . ∗)}, where ∗ ∈ {0, 1, . . . , 9}.

Corollary 3.10. Let 36 < n < 68, m = m0.m1 . . .mkmk+1 . . .mn, with m ∈ Wn, m0 =
m1 = . . . = mk = 0, mk+1 6= 0. Also, let V = υ0.υ1 . . . υsυs+1 . . . υn, with V ∈ Wn, υ0 =

υ1 = . . . = υs = 0, υs+1 6= 0, with

{
k + 35 < n
k + s+ 2 > n

, then Ψt = Ψ0
t .Ψ

1
t . . .Ψ

l
tΨ

l+1
t . . .Ψn

t and

Ψ0
t = . . .Ψl

t = 0, Ψl+1
t , . . . ,Ψn

t are free and in {0, 1, . . . , 9}, where l = n − k − 36, i.e., Ψt is a

random variable, with Ψt ∈ {(0.
n︷ ︸︸ ︷

0 . . . 0︸ ︷︷ ︸
l

∗ . . . ∗)}, where ∗ ∈ {0, 1, . . . , 9}.

3.4.3 Two-Slit Interference

Quantum mechanics treats the motion of an electron, neutron or atom by writing down the
Schrodinger equation:

− ~2

2m

δ2Ψ

δx2
+ VΨ = i~

δΨ

δt

where m is the particle mass and V is the external potential acting on the particle. As
these particles pass through the two slits of any of the experiments they are moving freely; we,
therefore, set V = 0 in the Schrodinger equation.

Now, consider the following:

−(~×n ~)×n Ψxx +n ((2×n m)×n V )×n Ψ = i((2×n m)×n ~)Ψt

where Ψ = Ψ(x, t), ~ is the Planck's Constant, ~ = 1.054571628(53)× 10−34 m2kg/s. Then we
have the following

Theorem 3.11. Let 36 < n < 68, m = m0.m1 . . .mkmk+1 . . .mn, with m ∈ Wn, m0 =
m1 = . . . = mk = 0, mk+1 6= 0, k + 35 < n, V = 0, then Ψt = Ψ0

t .Ψ
1
t . . .Ψ

l
tΨ

l+1
t . . .Ψn

t and
Ψ0
t = . . .Ψl

t = 0, Ψl+1
t , . . . ,Ψn

t are free and in {0, 1, . . . , 9}, where l = n − k − 36, i.e., Ψt is a

random variable, with Ψt ∈ {(0.
n︷ ︸︸ ︷

0 . . . 0︸ ︷︷ ︸
l

∗ . . . ∗)}, where ∗ ∈ {0, 1, . . . , 9}.
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The wave at the point of combination will be the sum of those from each slit. If Ψ1 is the
wave from slit 1 and Ψ2 is the wave from slit 2, then Ψ = Ψ1+Ψ2. The result gives the predicted
interference pattern. Then we have

Ψ1t = Ψ0
1t.Ψ

1
1t . . .Ψ

l
1tΨ

l+1
1t . . .Ψn

1t

Ψ2t = Ψ0
2t.Ψ

1
2t . . .Ψ

l
2tΨ

l+1
2t . . .Ψn

2t

Ψ0
1t = . . . = Ψl

1t = 0

Where Ψl1+1
1t , . . . ,Ψn

1t are free and in {0, 1, . . . , 9}. and

Ψ0
2t = . . . = Ψl

2t = 0

Where Ψl2+1
2t , . . . ,Ψn

2t are free and in {0, 1, . . . , 9} where l = n− k − 36.

Now we have the following

Theorem 3.12.

1. If Ψl+1
1t + Ψl+1

2t > 9, then Ψ1 + Ψ2 is not a wave.

2. If Ψl+1
1t + Ψl+1

2t < 9, then Ψ1 + Ψ2 is a wave.

3. If Ψl+1
1t + Ψl+1

2t = 9, then Ψ1 + Ψ2 may or may not be a wave.

3.4.4 Airy and Korteweg-de Vries Equations

If u : Wn ×Wn → Wn then the Airy equation may be written as

ut +n uxxx = 0

and Korteweg-de Vries equation may be written as

(ut +n uxxx) +n 6(u×n ux) = 0

Then we have the following

Theorem 3.13. Let
u = u0.u1 . . . ukuk+1 . . . un

and
ux = ux0 .u

x
1 . . . u

x
l u

x
l+1 . . . u

x
n

with k < n, l ≤ n and u0 = u1 = . . . = uk = 0 and ux0 = ux1 = . . . = uxl = 0 and k + l > n, then
Airy equation and Korteweg-de Vries equation have the solution.
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3.4.5 Schwartzian Derivative

The Schwartzian derivative S(f(x)) is de�ned as

S(f(x)) =
f ′′′(x)

f ′(x)
− 3

2

(
f ′′(x)

f ′(x)

)2

Here f(x) is a function in one real variable and f ′(x), f ′′(x), f ′′′(x) are its derivatives. The
Schwartzian derivative is ubiquitous and tends to appear in seemingly unrelated �elds of Mathe-
matics including classical complex analysis, di�erential equations, and one-dimensional analysis,
as well as more recently, Teichm�uller Theory, integrable systems, and conformal �eld theory. For
example, let's consider the Lorentz plane with the metric g = dxdy and a curve y = f(x). If
f ′(x) > 0, then its Lorentz curvature can be easily computed via

ρ(x) = f ′′(x)(f ′(x))−
3
2

and the Schwartzian enters the game when one computes ρ′ = S(f)√
f ′
. Thus, informally speaking,

the Schwartzian derivative is curvature.

Consider now the Schwartzian curvature from Observer's Mathematics point of view.

Now we have the following

Theorem 3.14. If S(f(x)) exists, then

• S(f(x)) is a random variable.

• |S(f(x)| ≤ 10l−k+1, where

(2×n (f ′(x)×n f ′(x))) = 0. 0 . . . 0al︸ ︷︷ ︸
l

al+1 . . . an

with al 6= 0 and

(2×n (f ′′′(x)×n f ′(x)))−n (3×n (f ′′(x)×n f ′′(x))) = ±0. 0 . . . 0bk︸ ︷︷ ︸
k

bk+1 . . . bn

with bk 6= 0 and 1 < l, k < n.

3.4.6 Newton equation

Let F (x, t) = m×n ẍ. Then we have the following

Theorem 3.15. If the body with mass m = m0.m1 . . .mkmk+1 . . .mn, with m ∈ Wn, moves
with acceleration ẍ, |ẍ| = ẍ0.ẍ1 . . . ẍlẍl+1 . . . ẍn, with ẍ ∈ Wn, and m0 = m1 = . . . = mk = 0,
mk+1 6= 0, k < n, ẍ0 = ẍ1 = . . . = ẍl = 0, l < n, k + l + 2 ∈ Wn, n < k + l + 2 ≤ q, then
F (x, t) = 0.

Corollary 3.16. If l = n− 1 and k = 0, i.e., m < 1, then F (x, t).

Theorem 3.17. If l = n− 1 and ẍn 6= 0 then |F (x, t)| < 9.

Theorem 3.18. If m0 ≥ 9 . . . 9︸ ︷︷ ︸
p

, 0 < p ≤ n, ẍ0 ≥ 9 . . . 9︸ ︷︷ ︸
r

, 0 < r ≤ n, n < p + r ≤ q, then there

is no force F (x, t), such that F (x, t) = m×n ẍ.
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3.4.7 Geodesic equation

Consider the following:

ẍi +n

∑
j
n
∑

k
nΓijk ×n (ẋj ×n ẋk) = 0

with j, k ∈ G. Then we have the following

Theorem 3.19. If ẋp = ẋp0.ẋ
p
1 . . . ẋ

p
l ẋ

p
l+1 . . . ẋ

p
n, with p ∈ G, ẋ

p
0 = ẋp1 = . . . = ẋpl = 0, 0 ≤ l ≤ n,

n < 2l ≤ q, then we have ẍi = 0, i.e., the geodesic curve is a line.

3.4.8 Wave-Particle Duality for Single Photons

The connection between interference as a characteristic of waves and particles was noticed by
de Broglie. He connected particle to wave mechanics. He proposed that particles behave as if
they possessed a wavelength that was inversely proportional to their momentum, mV , and that
the constant of proportionality was Planck's constant ~:

λ =
~
mV

I.e. we have
λmV = ~

We have the following equation in Observer's Mathematics: λ ×n (m ×n V ) = ~ with ~ =
1. . . .× 10−34 for n > 60. And now we have the following

Theorem 3.20. If m ×n V = c0.c1 . . . ckck+1 . . . cn with c0 = c1 = . . . = ck = 0 and ck+1 6= 0,
with k < n and λ = λ0.λ1 . . . λmλm+1 . . . λn with m < n and m + k > n, then λm+1, . . . , λn are
free and in {0, 1, . . . , 9} and λ0.λ1 . . . λm ×n 0. 0 . . . 0︸ ︷︷ ︸

k

ck+1 . . . cn = ~.

3.4.9 Uncertainty Principle

Using the de Broglie relationship between momentum and wave number, p = (~)k, we can obtain
the position-momentum uncertainty relationship:

∆p ·∆x = ~

Theorem 3.21. Let ∆p = p0.p1 . . . pkpk+1 . . . pn with k < n and ∆x = x0.x1 . . . xlxl+1 . . . xn
with l < n. Then

1. If p0 = p1 = . . . = pk = 0 and k + l > n, then xl+1, . . . , xn are free and in {0, 1, . . . , 9}.

2. If x0 = x1 = . . . = xl = 0 and k + l > n, then pk+1, . . . , pn are free and in {0, 1, . . . , 9}.

3. If p0 = p1 = . . . = pk = 0 and x0 = x1 = . . . = xl = 0 then k + l ≤ 34.
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