
6. LAGRANGIAN

Let's consider the Lagrangian for a free particle in classical mechanics. Consider the simplest
case, that of the free motion of a particle relative to an inertial frame of reference. The La-
grangian in this case can depend only on the square of the velocity. To discover the form of
this dependence, we make use of Galileo's relativity principle. If an inertial frame K is moving
with an in�nitesimal velocity ε relative to another inertial frame K ′, then v′ = v + ε. Since the
equations of motion must have the same form in every frame, the Lagrangian L(υ2) must be
converted by this transformation into a function L′ which di�ers from L(υ2), if at all, only by
the total time derivative of a function of coordinates and time.

We have L′ = L(υ′2) = L (υ2 + 2v · ε+ ε2). Expanding this expression in powers of ε and
neglecting terms above the �rst order, we obtain

L(υ′2) = L(υ2) +
∂L

∂v2
2v · ε

The second term on the right of this equation is a total time derivative only if it a linear function
of the velocity v. Hence ∂L

∂υ2
is independent of the velocity, i.e., the Lagrangian is in this case

proportional to the square of the velocity, and we write it as

L =
1

2
mυ2

From the fact that a Lagrangian of this form satis�es Galileo's relativity principle for an
in�nitesimal relative velocity, it follows at once that the Lagrangian is invariant for a �nite
relative velocity V of the frames K and K ′. For

L′ =
1

2
mυ′2 =

1

2
m (v + V)2 =

1

2
mυ2 +mv ·V +

1

2
mV2

or

L′ = L+
d
(
mv ·V + 1

2
V2t

)
dt

The second term is a total time derivative and may be omitted.

Let's consider the Lagrangian for a free particle in special relativity. The principle of Least
Action states that a mechanical system should have a quantity called the action S. Such
quantity is minimized (in other words, δS = 0 for the actual motion of the system. The action
of a relativistic system should be

1. a scalar, that means Lorentz transformations will not a�ect this quantity,

2. an integral of which the integrand is a �rst-order di�erential.

The only quantity that satis�es the two criteria above is the space-time interval ds, or a
scalar multiple thereof. In short, we can conclude that the action must have the following form:
S = κ

∫
ds. We have

ds =
√
c2dt− dx2 − dy2 − dz2
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After pulling out cdt from the square root and noting that dx2+dy2+dz2

dt2
= υ2, we have c2dt2 −

dx2 − dy2 − dz2 = c2dt2 − υ2dt2 = (c2 − υ2) dt and thus

ds = cdt

√
1− υ2

c2

Hence

S = cκ

∫ √
1− υ2

c2
dt

Now, the action integral can be expressed as a time integral of the Lagrangian between two �xed
times:

S =

∫
Ldt

Then we can just read o� the Lagrangian:

L = cκ

√
1− υ2

c2

What is remaining now is determining the expression for κ. At this point we should note that
for low velocity υ, this relativistic expression for the Lagrangian should resemble that of the
classical free Lagrangian L = 1

2
mυ2. To compare the two Lagrangians, we perform a Taylor

expansion on the square root:

L = cκ

(
1− υ2

2c2
+O(υ4)

)
The �rs term, cκ, is a constant. That will not a�ect the equations of motion (for example,
Euler-Lagrange Equation). The second term, after expanding out, is equal to −κυ2

2c
. To reduce

to the classical limit, we can put κ = −mc. Therefore, the relativistic Lagrangian is:

L = −mc2
√

1− υ2

c2

Let us consider the Observer's Mathematics point of view.

Theorem 6.1. In classical mechanics, P
(
L = mυ2

2

)
< 1, where P is the probability.

Theorem 6.2. In special relativity, P

(
L = −mc2

√
1− υ2

c2

)
< 1, where P is the probability.
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